基于层次预测的卷积网络模型及其在服装图像分类中的应用

Yuanjun Liu, Gaofeng Luo, F. Dong
{"title":"基于层次预测的卷积网络模型及其在服装图像分类中的应用","authors":"Yuanjun Liu, Gaofeng Luo, F. Dong","doi":"10.1109/ICDSBA48748.2019.00041","DOIUrl":null,"url":null,"abstract":"This article proposes a kind of new hierarchical classification model (HCNN) based on convolutional networks. The coarse category-fine category classification layer is set from the lower layer to the upper layer of the network. The experiment proves the necessity of hierarchical classification structure to classify clothing images. In previous studies, when using convolutional neural networks for image classification or other machine learning methods, most of them did not consider hierarchical. This paper attempts to classify apparel datasets using hierarchical CNN for the first time. The suggested model is a knowledge-embedded classifier which conveys some hierarchical information. We implemented HCNN using VGGNet as the underlying framework on the Fashion-MNIST dataset. The results show that the loss is reduced and the accuracy is improved when compared with the base model without hierarchy.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convolutional Network Model using Hierarchical Prediction and its Application in Clothing Image Classification\",\"authors\":\"Yuanjun Liu, Gaofeng Luo, F. Dong\",\"doi\":\"10.1109/ICDSBA48748.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a kind of new hierarchical classification model (HCNN) based on convolutional networks. The coarse category-fine category classification layer is set from the lower layer to the upper layer of the network. The experiment proves the necessity of hierarchical classification structure to classify clothing images. In previous studies, when using convolutional neural networks for image classification or other machine learning methods, most of them did not consider hierarchical. This paper attempts to classify apparel datasets using hierarchical CNN for the first time. The suggested model is a knowledge-embedded classifier which conveys some hierarchical information. We implemented HCNN using VGGNet as the underlying framework on the Fashion-MNIST dataset. The results show that the loss is reduced and the accuracy is improved when compared with the base model without hierarchy.\",\"PeriodicalId\":382429,\"journal\":{\"name\":\"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSBA48748.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的基于卷积网络的层次分类模型(HCNN)。从网络的下层到上层设置粗类-细类分类层。实验证明了分层分类结构对服装图像进行分类的必要性。在以往的研究中,使用卷积神经网络进行图像分类或其他机器学习方法时,大多没有考虑分层。本文首次尝试使用分层CNN对服装数据集进行分类。该模型是一种知识嵌入式分类器,可以传递一些层次信息。我们使用VGGNet作为Fashion-MNIST数据集的底层框架来实现HCNN。结果表明,与没有分层的基本模型相比,该模型减少了损失,提高了准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Network Model using Hierarchical Prediction and its Application in Clothing Image Classification
This article proposes a kind of new hierarchical classification model (HCNN) based on convolutional networks. The coarse category-fine category classification layer is set from the lower layer to the upper layer of the network. The experiment proves the necessity of hierarchical classification structure to classify clothing images. In previous studies, when using convolutional neural networks for image classification or other machine learning methods, most of them did not consider hierarchical. This paper attempts to classify apparel datasets using hierarchical CNN for the first time. The suggested model is a knowledge-embedded classifier which conveys some hierarchical information. We implemented HCNN using VGGNet as the underlying framework on the Fashion-MNIST dataset. The results show that the loss is reduced and the accuracy is improved when compared with the base model without hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信