遍历理论中的条件Lyapunov指数准则

Masaru Shintani, K. Umeno
{"title":"遍历理论中的条件Lyapunov指数准则","authors":"Masaru Shintani, K. Umeno","doi":"10.1093/PTEP/PTX168","DOIUrl":null,"url":null,"abstract":"The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conditional Lyapunov Exponent Criteria in terms of Ergodic Theory\",\"authors\":\"Masaru Shintani, K. Umeno\",\"doi\":\"10.1093/PTEP/PTX168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/PTEP/PTX168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/PTEP/PTX168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为研究混沌同步,特别是完全同步和广义同步,定义了条件Lyapunov指数。我们发现条件李雅普诺夫指数可以用遍历理论的公式来表示。利用这个公式,我们找到了混沌系统中条件李雅普诺夫指数的特征因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Lyapunov Exponent Criteria in terms of Ergodic Theory
The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信