{"title":"遍历理论中的条件Lyapunov指数准则","authors":"Masaru Shintani, K. Umeno","doi":"10.1093/PTEP/PTX168","DOIUrl":null,"url":null,"abstract":"The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conditional Lyapunov Exponent Criteria in terms of Ergodic Theory\",\"authors\":\"Masaru Shintani, K. Umeno\",\"doi\":\"10.1093/PTEP/PTX168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/PTEP/PTX168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/PTEP/PTX168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conditional Lyapunov Exponent Criteria in terms of Ergodic Theory
The conditional Lyapunov exponent is defined for investigating chaotic synchronization, in particular complete synchronization and generalized synchronization. We find that the conditional Lyapunov exponent is expressed as a formula in terms of ergodic theory. Dealing with this formula, we find what factors characterize the conditional Lyapunov exponent in chaotic systems.