基于不规则LDPC码的无线传感器网络最优渐进错误恢复

Saad B. Qaisar, H. Radha
{"title":"基于不规则LDPC码的无线传感器网络最优渐进错误恢复","authors":"Saad B. Qaisar, H. Radha","doi":"10.1109/CISS.2007.4298305","DOIUrl":null,"url":null,"abstract":"We study the problem of providing reliable data transmission in energy constrained wireless sensor networks (WSNs). Low rate channel coding can increase reliability and eliminate the need of costly retransmissions for sensor data. However, low rate channel coding on end to end basis puts a considerable burden in terms of transmit energy on resource constrained sensor nodes. We propose a scheme that progressively provides error resilience as information reaches the final destination. Precisely, we present a novel framework for processing within the network (in-network) using irregular low density parity check (LDPC) codes for channel coding, in which nodes progressively decode the information at intermediate nodes. We not only present the in-network processing setup, but also an optimal progressive error recovery algorithm (OPERA) that optimally maps the decoding iterations to attain maximum throughput at the destination node. We use density evolution algorithm for belief propagation decoding of LDPC codes to cast the optimization problem and use dynamic programming to reach the solution. We compare the performance of our scheme with end to end channel coding and establish the efficiency of proposed solution for a given energy budget. Finally, we give a comparison between our scheme and random iteration assignment for decoding at intermediate nodes, and show that our scheme performs considerably better.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimal Progressive Error Recovery for Wireless Sensor Networks using Irregular LDPC Codes\",\"authors\":\"Saad B. Qaisar, H. Radha\",\"doi\":\"10.1109/CISS.2007.4298305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of providing reliable data transmission in energy constrained wireless sensor networks (WSNs). Low rate channel coding can increase reliability and eliminate the need of costly retransmissions for sensor data. However, low rate channel coding on end to end basis puts a considerable burden in terms of transmit energy on resource constrained sensor nodes. We propose a scheme that progressively provides error resilience as information reaches the final destination. Precisely, we present a novel framework for processing within the network (in-network) using irregular low density parity check (LDPC) codes for channel coding, in which nodes progressively decode the information at intermediate nodes. We not only present the in-network processing setup, but also an optimal progressive error recovery algorithm (OPERA) that optimally maps the decoding iterations to attain maximum throughput at the destination node. We use density evolution algorithm for belief propagation decoding of LDPC codes to cast the optimization problem and use dynamic programming to reach the solution. We compare the performance of our scheme with end to end channel coding and establish the efficiency of proposed solution for a given energy budget. Finally, we give a comparison between our scheme and random iteration assignment for decoding at intermediate nodes, and show that our scheme performs considerably better.\",\"PeriodicalId\":151241,\"journal\":{\"name\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2007.4298305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

研究了在能量受限的无线传感器网络中提供可靠数据传输的问题。低速率信道编码可以提高可靠性,并消除昂贵的传感器数据重传的需要。然而,端到端的低速率信道编码给资源受限的传感器节点带来了相当大的传输能量负担。我们提出了一种方案,该方案在信息到达最终目的地时逐步提供错误恢复能力。准确地说,我们提出了一种新的网络内(网络内)处理框架,使用不规则低密度奇偶校验(LDPC)码进行信道编码,其中节点逐步解码中间节点的信息。我们不仅提出了网络内处理设置,而且还提出了一种最优渐进错误恢复算法(OPERA),该算法可以最优地映射解码迭代以在目标节点上获得最大吞吐量。采用密度进化算法对LDPC码的信念传播译码进行优化问题的求解,并采用动态规划方法求解。我们将该方案与端到端信道编码的性能进行了比较,并在给定的能量预算下确定了该方案的效率。最后,我们将该方案与中间节点的随机迭代分配解码进行了比较,结果表明该方案的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Progressive Error Recovery for Wireless Sensor Networks using Irregular LDPC Codes
We study the problem of providing reliable data transmission in energy constrained wireless sensor networks (WSNs). Low rate channel coding can increase reliability and eliminate the need of costly retransmissions for sensor data. However, low rate channel coding on end to end basis puts a considerable burden in terms of transmit energy on resource constrained sensor nodes. We propose a scheme that progressively provides error resilience as information reaches the final destination. Precisely, we present a novel framework for processing within the network (in-network) using irregular low density parity check (LDPC) codes for channel coding, in which nodes progressively decode the information at intermediate nodes. We not only present the in-network processing setup, but also an optimal progressive error recovery algorithm (OPERA) that optimally maps the decoding iterations to attain maximum throughput at the destination node. We use density evolution algorithm for belief propagation decoding of LDPC codes to cast the optimization problem and use dynamic programming to reach the solution. We compare the performance of our scheme with end to end channel coding and establish the efficiency of proposed solution for a given energy budget. Finally, we give a comparison between our scheme and random iteration assignment for decoding at intermediate nodes, and show that our scheme performs considerably better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信