人脸识别应用公平性标准

F. Michalsky
{"title":"人脸识别应用公平性标准","authors":"F. Michalsky","doi":"10.1145/3306618.3314308","DOIUrl":null,"url":null,"abstract":"Nowadays, machine learning algorithms play an important role in our daily lives and it is important to ensure their fairness and transparency. A number of methodologies for evaluating machine learning fairness have been introduced in the literature. In this research we propose a systematic confidence evaluation approach to measure fairness discrepancies of our deep learning architecture for image recognition using UTKFace database.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fairness Criteria for Face Recognition Applications\",\"authors\":\"F. Michalsky\",\"doi\":\"10.1145/3306618.3314308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, machine learning algorithms play an important role in our daily lives and it is important to ensure their fairness and transparency. A number of methodologies for evaluating machine learning fairness have been introduced in the literature. In this research we propose a systematic confidence evaluation approach to measure fairness discrepancies of our deep learning architecture for image recognition using UTKFace database.\",\"PeriodicalId\":418125,\"journal\":{\"name\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306618.3314308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,机器学习算法在我们的日常生活中扮演着重要的角色,确保其公平性和透明度非常重要。文献中介绍了许多评估机器学习公平性的方法。在这项研究中,我们提出了一个系统的置信度评估方法来衡量我们的深度学习架构的公平性差异,该架构使用UTKFace数据库进行图像识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fairness Criteria for Face Recognition Applications
Nowadays, machine learning algorithms play an important role in our daily lives and it is important to ensure their fairness and transparency. A number of methodologies for evaluating machine learning fairness have been introduced in the literature. In this research we propose a systematic confidence evaluation approach to measure fairness discrepancies of our deep learning architecture for image recognition using UTKFace database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信