基于反向传播神经网络的轮式机器人计算智能控制系统的开发

K. Priandana, Iqbal Abiyoga, Wulandari, S. Wahjuni, M. Hardhienata, A. Buono
{"title":"基于反向传播神经网络的轮式机器人计算智能控制系统的开发","authors":"K. Priandana, Iqbal Abiyoga, Wulandari, S. Wahjuni, M. Hardhienata, A. Buono","doi":"10.1109/ICECOS.2018.8605183","DOIUrl":null,"url":null,"abstract":"This study aims to develop an optimal autonomous control system for a three-wheeled robot with two motors. The focus of this research is a neural network direct inverse controller system that is trained using backpropagation algorithm. Autonomous control system training is carried out by using the real data of manually controlled wheeled robot. This study analyzed the use of two Backpropagation learning algorithms namely Levenberg Marquardt Backpropagation and Bayesian Regularization Backpropagation, and compares 3 different controller network configurations, i.e., 13–10-2, 13– 20-2 and 13–26-2. The simulation results revealed that the best control system network architecture is 13–10-2 which was trained using Bayesian Regularization Backpropagation algorithm. This result serves as early evidence that a neural network-based control system can be used for autonomous wheeled robots.","PeriodicalId":149318,"journal":{"name":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Development of Computational Intelligence-based Control System using Backpropagation Neural Network for Wheeled Robot\",\"authors\":\"K. Priandana, Iqbal Abiyoga, Wulandari, S. Wahjuni, M. Hardhienata, A. Buono\",\"doi\":\"10.1109/ICECOS.2018.8605183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop an optimal autonomous control system for a three-wheeled robot with two motors. The focus of this research is a neural network direct inverse controller system that is trained using backpropagation algorithm. Autonomous control system training is carried out by using the real data of manually controlled wheeled robot. This study analyzed the use of two Backpropagation learning algorithms namely Levenberg Marquardt Backpropagation and Bayesian Regularization Backpropagation, and compares 3 different controller network configurations, i.e., 13–10-2, 13– 20-2 and 13–26-2. The simulation results revealed that the best control system network architecture is 13–10-2 which was trained using Bayesian Regularization Backpropagation algorithm. This result serves as early evidence that a neural network-based control system can be used for autonomous wheeled robots.\",\"PeriodicalId\":149318,\"journal\":{\"name\":\"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECOS.2018.8605183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2018.8605183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本研究旨在开发一种具有两个马达的三轮机器人的最优自主控制系统。本研究的重点是利用反向传播算法训练神经网络直接逆控制器系统。利用手控轮式机器人的真实数据进行自主控制系统的训练。本研究分析了Levenberg Marquardt Backpropagation和Bayesian Regularization Backpropagation两种反向传播学习算法的使用,并比较了13 - 10-2、13 - 20-2和13 - 26-2三种不同的控制器网络配置。仿真结果表明,采用贝叶斯正则化反向传播算法训练的控制系统网络结构为13-10-2。这一结果为基于神经网络的控制系统可用于自主轮式机器人提供了早期证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Computational Intelligence-based Control System using Backpropagation Neural Network for Wheeled Robot
This study aims to develop an optimal autonomous control system for a three-wheeled robot with two motors. The focus of this research is a neural network direct inverse controller system that is trained using backpropagation algorithm. Autonomous control system training is carried out by using the real data of manually controlled wheeled robot. This study analyzed the use of two Backpropagation learning algorithms namely Levenberg Marquardt Backpropagation and Bayesian Regularization Backpropagation, and compares 3 different controller network configurations, i.e., 13–10-2, 13– 20-2 and 13–26-2. The simulation results revealed that the best control system network architecture is 13–10-2 which was trained using Bayesian Regularization Backpropagation algorithm. This result serves as early evidence that a neural network-based control system can be used for autonomous wheeled robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信