冷凝相变过程中微观结构对超疏水和光滑润滑多孔表面的影响

D. Orejón, Yota Maeda, F. Lv, Peng Zhang, Y. Takata
{"title":"冷凝相变过程中微观结构对超疏水和光滑润滑多孔表面的影响","authors":"D. Orejón, Yota Maeda, F. Lv, Peng Zhang, Y. Takata","doi":"10.1115/ICNMM2018-7640","DOIUrl":null,"url":null,"abstract":"Superhydrophobic surfaces (SHSs) and slippery lubricant-infused porous surfaces (SLIPSs) are receiving increasing attention for their excellent anti-icing, anti-fogging, self-cleaning and condensation heat transfer properties. The ability of such surfaces to passively shed and repel water is mainly due to the low-adhesion between the liquid and the solid surface, i.e., low contact angle hysteresis, when compared to hydrophilic or to hydrophobic surfaces. In this work we investigated the effect of surface structure on the condensation performance on SHSs and SLIPSs. Three different SHSs with structures varying from the micro- to the nano-scale were fabricated following easy and scalable etching and oxidation growth procedures. The condensation performance on such surfaces was evaluated by optical microscopy in a temperature and humidity controlled environmental chamber. On SHSs important differences on the size and on the number of the coalescing droplets required for the jump to ensue were found when varying the surface structure underneath the condensing droplets. A surface energy analysis is proposed to account for the suppression of the droplet-jumping performance in the presence of microstructures. On other hand, by impregnating the same SHSs with a low surface tension oil, i.e., SLIPSs, the adhesion between the condensate and the SLIPSs can be further reduced. On SLIPSs slight differences on the droplet density over time and shedding performance upon the inclusion of microstructures were observed. Droplets were found to shed faster and with smaller diameters on SLIPSs in the presence of microstructures when compared to solely nanostructured SLIPSs.\n We conclude that on SHSs the droplet-jumping performance of micrometer droplets is deteriorated in the presence of microstructures with the consequent decrease in the heat transfer performance, whereas on SLIPSs the droplet self-removal is actually improved in the presence of microstructures.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Microstructures on Superhydrophobic and Slippery Lubricant-Infused Porous Surfaces During Condensation Phase-Change\",\"authors\":\"D. Orejón, Yota Maeda, F. Lv, Peng Zhang, Y. Takata\",\"doi\":\"10.1115/ICNMM2018-7640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superhydrophobic surfaces (SHSs) and slippery lubricant-infused porous surfaces (SLIPSs) are receiving increasing attention for their excellent anti-icing, anti-fogging, self-cleaning and condensation heat transfer properties. The ability of such surfaces to passively shed and repel water is mainly due to the low-adhesion between the liquid and the solid surface, i.e., low contact angle hysteresis, when compared to hydrophilic or to hydrophobic surfaces. In this work we investigated the effect of surface structure on the condensation performance on SHSs and SLIPSs. Three different SHSs with structures varying from the micro- to the nano-scale were fabricated following easy and scalable etching and oxidation growth procedures. The condensation performance on such surfaces was evaluated by optical microscopy in a temperature and humidity controlled environmental chamber. On SHSs important differences on the size and on the number of the coalescing droplets required for the jump to ensue were found when varying the surface structure underneath the condensing droplets. A surface energy analysis is proposed to account for the suppression of the droplet-jumping performance in the presence of microstructures. On other hand, by impregnating the same SHSs with a low surface tension oil, i.e., SLIPSs, the adhesion between the condensate and the SLIPSs can be further reduced. On SLIPSs slight differences on the droplet density over time and shedding performance upon the inclusion of microstructures were observed. Droplets were found to shed faster and with smaller diameters on SLIPSs in the presence of microstructures when compared to solely nanostructured SLIPSs.\\n We conclude that on SHSs the droplet-jumping performance of micrometer droplets is deteriorated in the presence of microstructures with the consequent decrease in the heat transfer performance, whereas on SLIPSs the droplet self-removal is actually improved in the presence of microstructures.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超疏水表面(SHSs)和光滑润滑剂注入多孔表面(SLIPSs)因其优异的防冰、防雾、自清洁和冷凝传热性能而受到越来越多的关注。这种表面被动脱落和排斥水的能力主要是由于液体和固体表面之间的低粘附性,即与亲水性或疏水性表面相比,接触角滞后较小。本文研究了表面结构对SHSs和sliss凝结性能的影响。采用简单、可扩展的蚀刻和氧化生长方法制备了三种不同的SHSs,其结构从微观到纳米级不等。在温度和湿度控制的环境室中,通过光学显微镜评估了这些表面的冷凝性能。在SHSs上,当改变冷凝液滴下面的表面结构时,发现发生跳跃所需的凝聚液滴的大小和数量存在重要差异。提出了一种表面能分析来解释微结构存在时液滴跳跃性能的抑制。另一方面,用低表面张力油(即SLIPSs)浸渍相同的SHSs,可以进一步降低凝结液与SLIPSs之间的附着力。在sliss上,观察到液滴密度随时间的变化和微结构夹杂后的脱落性能的微小差异。与纳米结构的sliss相比,在微结构的sliss上,液滴的脱落速度更快,直径更小。我们得出结论,在微观结构存在的情况下,微液滴的跳变性能变差,从而导致传热性能下降,而在微观结构存在的情况下,在sliss上,液滴的自去除实际上得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Microstructures on Superhydrophobic and Slippery Lubricant-Infused Porous Surfaces During Condensation Phase-Change
Superhydrophobic surfaces (SHSs) and slippery lubricant-infused porous surfaces (SLIPSs) are receiving increasing attention for their excellent anti-icing, anti-fogging, self-cleaning and condensation heat transfer properties. The ability of such surfaces to passively shed and repel water is mainly due to the low-adhesion between the liquid and the solid surface, i.e., low contact angle hysteresis, when compared to hydrophilic or to hydrophobic surfaces. In this work we investigated the effect of surface structure on the condensation performance on SHSs and SLIPSs. Three different SHSs with structures varying from the micro- to the nano-scale were fabricated following easy and scalable etching and oxidation growth procedures. The condensation performance on such surfaces was evaluated by optical microscopy in a temperature and humidity controlled environmental chamber. On SHSs important differences on the size and on the number of the coalescing droplets required for the jump to ensue were found when varying the surface structure underneath the condensing droplets. A surface energy analysis is proposed to account for the suppression of the droplet-jumping performance in the presence of microstructures. On other hand, by impregnating the same SHSs with a low surface tension oil, i.e., SLIPSs, the adhesion between the condensate and the SLIPSs can be further reduced. On SLIPSs slight differences on the droplet density over time and shedding performance upon the inclusion of microstructures were observed. Droplets were found to shed faster and with smaller diameters on SLIPSs in the presence of microstructures when compared to solely nanostructured SLIPSs. We conclude that on SHSs the droplet-jumping performance of micrometer droplets is deteriorated in the presence of microstructures with the consequent decrease in the heat transfer performance, whereas on SLIPSs the droplet self-removal is actually improved in the presence of microstructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信