{"title":"基于遗传算法的经济负荷调度方法","authors":"H. Mori, T. Horiguchi","doi":"10.1109/ANN.1993.264299","DOIUrl":null,"url":null,"abstract":"This paper presents a two-phase genetic algorithm for economic load dispatching of generators in power systems. The problem of ELD is expressed as a Lagrange function. The conventional GA has a drawback that the algorithm is not so effective as the number of variables increases. To improve the GA characteristic, a two-phase GA is proposed to obtain better solutions. The proposed genetic algorithm may be applied to minimize the Lagrange function with respect to the generator unit output. The effectiveness of the proposed method is demonstrated in a 20-unit system.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A genetic algorithm based approach to economic load dispatching\",\"authors\":\"H. Mori, T. Horiguchi\",\"doi\":\"10.1109/ANN.1993.264299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a two-phase genetic algorithm for economic load dispatching of generators in power systems. The problem of ELD is expressed as a Lagrange function. The conventional GA has a drawback that the algorithm is not so effective as the number of variables increases. To improve the GA characteristic, a two-phase GA is proposed to obtain better solutions. The proposed genetic algorithm may be applied to minimize the Lagrange function with respect to the generator unit output. The effectiveness of the proposed method is demonstrated in a 20-unit system.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A genetic algorithm based approach to economic load dispatching
This paper presents a two-phase genetic algorithm for economic load dispatching of generators in power systems. The problem of ELD is expressed as a Lagrange function. The conventional GA has a drawback that the algorithm is not so effective as the number of variables increases. To improve the GA characteristic, a two-phase GA is proposed to obtain better solutions. The proposed genetic algorithm may be applied to minimize the Lagrange function with respect to the generator unit output. The effectiveness of the proposed method is demonstrated in a 20-unit system.<>