用半定规划方法确定高斯信念传播中方差的收敛性

Qinliang Su, Yik-Chung Wu
{"title":"用半定规划方法确定高斯信念传播中方差的收敛性","authors":"Qinliang Su, Yik-Chung Wu","doi":"10.1109/ISIT.2014.6875307","DOIUrl":null,"url":null,"abstract":"In order to compute the marginal distribution from a high dimensional distribution with loopy Gaussian belief propagation (BP), it is important to determine whether Gaussian BP would converge. In general, the convergence condition for Gaussian BP variance and mean are not necessarily the same, and this paper focuses on the convergence condition of Gaussian BP variance. In particular, by describing the message-passing process of Gaussian BP as a set of updating functions, the necessary and sufficient convergence condition of Gaussian BP variance is derived, with the converged variance proved to be independent of the initialization as long as it is greater or equal to zero. It is further proved that the convergence condition can be verified efficiently by solving a semi-definite programming (SDP) optimization problem. Numerical examples are presented to corroborate the established theories.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining the convergence of variance in Gaussian belief propagation via semi-definite programming\",\"authors\":\"Qinliang Su, Yik-Chung Wu\",\"doi\":\"10.1109/ISIT.2014.6875307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to compute the marginal distribution from a high dimensional distribution with loopy Gaussian belief propagation (BP), it is important to determine whether Gaussian BP would converge. In general, the convergence condition for Gaussian BP variance and mean are not necessarily the same, and this paper focuses on the convergence condition of Gaussian BP variance. In particular, by describing the message-passing process of Gaussian BP as a set of updating functions, the necessary and sufficient convergence condition of Gaussian BP variance is derived, with the converged variance proved to be independent of the initialization as long as it is greater or equal to zero. It is further proved that the convergence condition can be verified efficiently by solving a semi-definite programming (SDP) optimization problem. Numerical examples are presented to corroborate the established theories.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了从具有循环高斯信念传播(BP)的高维分布中计算边缘分布,确定高斯BP是否收敛是一个重要问题。一般情况下,高斯BP方差的收敛条件与均值的收敛条件不一定相同,本文重点研究高斯BP方差的收敛条件。特别地,通过将高斯BP的消息传递过程描述为一组更新函数,推导了高斯BP方差收敛的充分必要条件,证明了只要收敛方差大于等于零,收敛方差与初始化无关。通过求解一个半定规划(SDP)优化问题,进一步证明了该方法的收敛条件是有效的。数值算例验证了已有的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the convergence of variance in Gaussian belief propagation via semi-definite programming
In order to compute the marginal distribution from a high dimensional distribution with loopy Gaussian belief propagation (BP), it is important to determine whether Gaussian BP would converge. In general, the convergence condition for Gaussian BP variance and mean are not necessarily the same, and this paper focuses on the convergence condition of Gaussian BP variance. In particular, by describing the message-passing process of Gaussian BP as a set of updating functions, the necessary and sufficient convergence condition of Gaussian BP variance is derived, with the converged variance proved to be independent of the initialization as long as it is greater or equal to zero. It is further proved that the convergence condition can be verified efficiently by solving a semi-definite programming (SDP) optimization problem. Numerical examples are presented to corroborate the established theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信