康复机器人步态运动的高斯过程学习与插值

C. Chun, Seung-jong Kim, Jisoo Hong, F. Park
{"title":"康复机器人步态运动的高斯过程学习与插值","authors":"C. Chun, Seung-jong Kim, Jisoo Hong, F. Park","doi":"10.1109/ICARA.2015.7081147","DOIUrl":null,"url":null,"abstract":"We present an alternative approach to generate gait motion at arbitrary speed for gait rehabilitation robots. The methodology utilizes Gaussian process dynamical model (GPDM), which is a nonlinear dimensionality reduction technique. GPDM consists of a dynamics in low-dimensional latent space and a mapping from the space to configuration space, and GPDM learning results in the low-dimensional representation of training data and parameters for the dynamics and mapping. We use second-order Markov process dynamics model, and hence given a pair of initial points, the dynamics generates a latent trajectory at arbitrary speed. We use linear regression to obtain the initial points. Mapping from the latent to configuration spaces constructs trajectories of walking motion. We verify the algorithm with motion capture data from 50 healthy subjects, who walked on a treadmill at 1, 2, and 3 km/h. We show examples and compare the original and interpolated trajectories to prove the efficacy of the algorithm.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gaussian process learning and interpolation of gait motion for rehabilitation robots\",\"authors\":\"C. Chun, Seung-jong Kim, Jisoo Hong, F. Park\",\"doi\":\"10.1109/ICARA.2015.7081147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an alternative approach to generate gait motion at arbitrary speed for gait rehabilitation robots. The methodology utilizes Gaussian process dynamical model (GPDM), which is a nonlinear dimensionality reduction technique. GPDM consists of a dynamics in low-dimensional latent space and a mapping from the space to configuration space, and GPDM learning results in the low-dimensional representation of training data and parameters for the dynamics and mapping. We use second-order Markov process dynamics model, and hence given a pair of initial points, the dynamics generates a latent trajectory at arbitrary speed. We use linear regression to obtain the initial points. Mapping from the latent to configuration spaces constructs trajectories of walking motion. We verify the algorithm with motion capture data from 50 healthy subjects, who walked on a treadmill at 1, 2, and 3 km/h. We show examples and compare the original and interpolated trajectories to prove the efficacy of the algorithm.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种替代方法来产生步态运动在任意速度的步态康复机器人。该方法采用高斯过程动力学模型(GPDM),这是一种非线性降维技术。GPDM由低维潜在空间的动态和从空间到配置空间的映射组成,GPDM学习的结果是训练数据的低维表示以及动态和映射的参数。采用二阶马尔可夫过程动力学模型,给定一对初始点,动态生成任意速度的潜轨迹。我们使用线性回归来获得初始点。从潜空间到构形空间的映射构建了行走运动轨迹。我们用50名健康受试者的动作捕捉数据验证了该算法,他们在跑步机上以1、2和3公里/小时的速度行走。通过实例比较原始轨迹和插值轨迹来证明算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian process learning and interpolation of gait motion for rehabilitation robots
We present an alternative approach to generate gait motion at arbitrary speed for gait rehabilitation robots. The methodology utilizes Gaussian process dynamical model (GPDM), which is a nonlinear dimensionality reduction technique. GPDM consists of a dynamics in low-dimensional latent space and a mapping from the space to configuration space, and GPDM learning results in the low-dimensional representation of training data and parameters for the dynamics and mapping. We use second-order Markov process dynamics model, and hence given a pair of initial points, the dynamics generates a latent trajectory at arbitrary speed. We use linear regression to obtain the initial points. Mapping from the latent to configuration spaces constructs trajectories of walking motion. We verify the algorithm with motion capture data from 50 healthy subjects, who walked on a treadmill at 1, 2, and 3 km/h. We show examples and compare the original and interpolated trajectories to prove the efficacy of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信