基于DSP的改进语音识别系统

Swapnil D. Daphal, S. Jagtap
{"title":"基于DSP的改进语音识别系统","authors":"Swapnil D. Daphal, S. Jagtap","doi":"10.1109/ICCICT.2012.6398181","DOIUrl":null,"url":null,"abstract":"Processing of large amount of data is an important aspect of Speech Recognition (SR). However, to formulate speech recognition system in small devices is not simple. This paper suggests Digital Signal Processor (DSP) based speech recognition system with improved performance in terms of recognition accuracies and computational cost. The comprehensive survey of various approaches of feature extraction, like Mel Filter Banks with Mel Frequency Cepstrum Coefficients (MFCC) and Cochlear Filter Banks (CFB) with Zero-crossings is given. Amongst various feature classification techniques, the suitability of the Support Vector Machine (SVM) classifier for the proposed system is significant.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DSP based improved Speech Recognition system\",\"authors\":\"Swapnil D. Daphal, S. Jagtap\",\"doi\":\"10.1109/ICCICT.2012.6398181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing of large amount of data is an important aspect of Speech Recognition (SR). However, to formulate speech recognition system in small devices is not simple. This paper suggests Digital Signal Processor (DSP) based speech recognition system with improved performance in terms of recognition accuracies and computational cost. The comprehensive survey of various approaches of feature extraction, like Mel Filter Banks with Mel Frequency Cepstrum Coefficients (MFCC) and Cochlear Filter Banks (CFB) with Zero-crossings is given. Amongst various feature classification techniques, the suitability of the Support Vector Machine (SVM) classifier for the proposed system is significant.\",\"PeriodicalId\":319467,\"journal\":{\"name\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICT.2012.6398181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

海量数据的处理是语音识别的一个重要方面。然而,在小型设备上制定语音识别系统并不简单。本文提出了一种基于数字信号处理器(DSP)的语音识别系统,该系统在识别精度和计算成本方面都有所提高。综合介绍了各种特征提取方法,如具有Mel频率倒谱系数的Mel滤波器组(MFCC)和具有零交叉的Cochlear滤波器组(CFB)。在各种特征分类技术中,支持向量机(SVM)分类器对所提出的系统的适用性非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSP based improved Speech Recognition system
Processing of large amount of data is an important aspect of Speech Recognition (SR). However, to formulate speech recognition system in small devices is not simple. This paper suggests Digital Signal Processor (DSP) based speech recognition system with improved performance in terms of recognition accuracies and computational cost. The comprehensive survey of various approaches of feature extraction, like Mel Filter Banks with Mel Frequency Cepstrum Coefficients (MFCC) and Cochlear Filter Banks (CFB) with Zero-crossings is given. Amongst various feature classification techniques, the suitability of the Support Vector Machine (SVM) classifier for the proposed system is significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信