基于交换单元的多模态对话用户兴趣评估

Sayaka Tomimasu, Masahiro Araki
{"title":"基于交换单元的多模态对话用户兴趣评估","authors":"Sayaka Tomimasu, Masahiro Araki","doi":"10.1145/3011263.3011269","DOIUrl":null,"url":null,"abstract":"A person is more likely to enjoy long-term conversations with a robot if it has the capability to infer the topics that interest the person. In this paper, we propose a method of deducing the specific topics that interest a user by sequentially assessing each exchange in a chat-oriented dialog session. We use multimodal information such as facial expressions and prosodic information obtained from the user's utterances for assessing interest as these parameters are independent of linguistic information that varies widely in chat-oriented dialogs. The results show that the accuracy of the assessment of the user's interest is better when we use both features.","PeriodicalId":272696,"journal":{"name":"Proceedings of the Workshop on Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction","volume":"3 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Assessment of users' interests in multimodal dialog based on exchange unit\",\"authors\":\"Sayaka Tomimasu, Masahiro Araki\",\"doi\":\"10.1145/3011263.3011269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A person is more likely to enjoy long-term conversations with a robot if it has the capability to infer the topics that interest the person. In this paper, we propose a method of deducing the specific topics that interest a user by sequentially assessing each exchange in a chat-oriented dialog session. We use multimodal information such as facial expressions and prosodic information obtained from the user's utterances for assessing interest as these parameters are independent of linguistic information that varies widely in chat-oriented dialogs. The results show that the accuracy of the assessment of the user's interest is better when we use both features.\",\"PeriodicalId\":272696,\"journal\":{\"name\":\"Proceedings of the Workshop on Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction\",\"volume\":\"3 3-4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3011263.3011269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3011263.3011269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

如果机器人能够推断出人们感兴趣的话题,人们更有可能喜欢与机器人进行长时间的对话。在本文中,我们提出了一种通过顺序评估面向聊天的对话会话中的每个交换来推断用户感兴趣的特定主题的方法。我们使用从用户话语中获得的面部表情和韵律信息等多模态信息来评估兴趣,因为这些参数独立于语言信息,而语言信息在以聊天为导向的对话中变化很大。结果表明,当我们同时使用这两种特征时,对用户兴趣的评估准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of users' interests in multimodal dialog based on exchange unit
A person is more likely to enjoy long-term conversations with a robot if it has the capability to infer the topics that interest the person. In this paper, we propose a method of deducing the specific topics that interest a user by sequentially assessing each exchange in a chat-oriented dialog session. We use multimodal information such as facial expressions and prosodic information obtained from the user's utterances for assessing interest as these parameters are independent of linguistic information that varies widely in chat-oriented dialogs. The results show that the accuracy of the assessment of the user's interest is better when we use both features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信