用深度学习和机器学习评估心脏病

Sachin Upadhyay, Sanjiv Kumar Singh, Jayati Krishna Goswami, Shiv Shanker Singh
{"title":"用深度学习和机器学习评估心脏病","authors":"Sachin Upadhyay, Sanjiv Kumar Singh, Jayati Krishna Goswami, Shiv Shanker Singh","doi":"10.1109/ISCON57294.2023.10112002","DOIUrl":null,"url":null,"abstract":"All over the world is affected by the disease which is named as heart disease. The main reason behind the heart disease is our busy life, as the person is affected not only by office work but also by personal problems. This mortality rate is too high. We can predict this disease with the help of Machine Learning (ML) and Deep Learning (DL) prediction models. In this paper, to reach the accuracy we worked on three ML & DL models. For this paper we use ML models named as: SVM (Support Vector Machine), LR (Logistic Regression) & Naïve Bayes. DL models named as: CNN (Convolutional Neural Network), RNN (Recurrent Neural Network) & LSTM (Long Short Term Memory). The accuracy obtained in this study is made up of the 85% accuracy of Logistic Regression, the 89% accuracy of SVM, and the 85% accuracy of Naive Bayes. LSTM has an accuracy of 83%, RNN has an accuracy of 91%, and CNN has an accuracy of 83%. The study’s findings indicate that the RNN model is the most accurate, coming in at 90%, and from this we can say that it is the best at predicting heart disease.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Disease Evaluation with Deep Learning and Machine Learning\",\"authors\":\"Sachin Upadhyay, Sanjiv Kumar Singh, Jayati Krishna Goswami, Shiv Shanker Singh\",\"doi\":\"10.1109/ISCON57294.2023.10112002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All over the world is affected by the disease which is named as heart disease. The main reason behind the heart disease is our busy life, as the person is affected not only by office work but also by personal problems. This mortality rate is too high. We can predict this disease with the help of Machine Learning (ML) and Deep Learning (DL) prediction models. In this paper, to reach the accuracy we worked on three ML & DL models. For this paper we use ML models named as: SVM (Support Vector Machine), LR (Logistic Regression) & Naïve Bayes. DL models named as: CNN (Convolutional Neural Network), RNN (Recurrent Neural Network) & LSTM (Long Short Term Memory). The accuracy obtained in this study is made up of the 85% accuracy of Logistic Regression, the 89% accuracy of SVM, and the 85% accuracy of Naive Bayes. LSTM has an accuracy of 83%, RNN has an accuracy of 91%, and CNN has an accuracy of 83%. The study’s findings indicate that the RNN model is the most accurate, coming in at 90%, and from this we can say that it is the best at predicting heart disease.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10112002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全世界都受到一种叫做心脏病的疾病的影响。心脏病背后的主要原因是我们忙碌的生活,因为人们不仅受到办公室工作的影响,还受到个人问题的影响。这个死亡率太高了。我们可以借助机器学习(ML)和深度学习(DL)预测模型来预测这种疾病。在本文中,为了达到精度,我们研究了三个ML和DL模型。对于本文,我们使用ML模型命名为:SVM(支持向量机),LR(逻辑回归)和Naïve贝叶斯。DL模型命名为:CNN(卷积神经网络),RNN(循环神经网络)和LSTM(长短期记忆)。本研究得到的准确率由Logistic回归的85%准确率、SVM的89%准确率和朴素贝叶斯的85%准确率组成。LSTM的准确率为83%,RNN的准确率为91%,CNN的准确率为83%。研究结果表明,RNN模型是最准确的,准确率达到90%,由此我们可以说它是预测心脏病的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Disease Evaluation with Deep Learning and Machine Learning
All over the world is affected by the disease which is named as heart disease. The main reason behind the heart disease is our busy life, as the person is affected not only by office work but also by personal problems. This mortality rate is too high. We can predict this disease with the help of Machine Learning (ML) and Deep Learning (DL) prediction models. In this paper, to reach the accuracy we worked on three ML & DL models. For this paper we use ML models named as: SVM (Support Vector Machine), LR (Logistic Regression) & Naïve Bayes. DL models named as: CNN (Convolutional Neural Network), RNN (Recurrent Neural Network) & LSTM (Long Short Term Memory). The accuracy obtained in this study is made up of the 85% accuracy of Logistic Regression, the 89% accuracy of SVM, and the 85% accuracy of Naive Bayes. LSTM has an accuracy of 83%, RNN has an accuracy of 91%, and CNN has an accuracy of 83%. The study’s findings indicate that the RNN model is the most accurate, coming in at 90%, and from this we can say that it is the best at predicting heart disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信