Ivan Grasso, Klaus Kofler, Biagio Cosenza, T. Fahringer
{"title":"异构并行系统中问题大小敏感任务的自动划分","authors":"Ivan Grasso, Klaus Kofler, Biagio Cosenza, T. Fahringer","doi":"10.1145/2442516.2442545","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automatic problem size sensitive task partitioning on heterogeneous parallel systems\",\"authors\":\"Ivan Grasso, Klaus Kofler, Biagio Cosenza, T. Fahringer\",\"doi\":\"10.1145/2442516.2442545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2442516.2442545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442516.2442545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic problem size sensitive task partitioning on heterogeneous parallel systems
In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.