Abhyankar估值的局部统一

S. Cutkosky
{"title":"Abhyankar估值的局部统一","authors":"S. Cutkosky","doi":"10.1307/mmj/20205888","DOIUrl":null,"url":null,"abstract":"We prove local uniformization of Abhyankar valuations of an algebraic function field K over a ground field k. Our result generalizes the proof of this result, with the additional assumption that the residue field of the valuation ring is separable over k, by Hagen Knaf and Franz-Viktor Kuhlmann. The proof in this paper uses different methods, being inspired by the approach of Zariski and Abhyankar.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Local Uniformization of Abhyankar Valuations\",\"authors\":\"S. Cutkosky\",\"doi\":\"10.1307/mmj/20205888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove local uniformization of Abhyankar valuations of an algebraic function field K over a ground field k. Our result generalizes the proof of this result, with the additional assumption that the residue field of the valuation ring is separable over k, by Hagen Knaf and Franz-Viktor Kuhlmann. The proof in this paper uses different methods, being inspired by the approach of Zariski and Abhyankar.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1307/mmj/20205888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了代数函数域K在地面域K上的Abhyankar赋值的局部均匀性。我们的结果推广了这一结果的证明,并附加了由Hagen Knaf和Franz-Viktor Kuhlmann提出的赋值环的剩余域在K上是可分离的假设。本文的证明受到Zariski和Abhyankar方法的启发,使用了不同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Uniformization of Abhyankar Valuations
We prove local uniformization of Abhyankar valuations of an algebraic function field K over a ground field k. Our result generalizes the proof of this result, with the additional assumption that the residue field of the valuation ring is separable over k, by Hagen Knaf and Franz-Viktor Kuhlmann. The proof in this paper uses different methods, being inspired by the approach of Zariski and Abhyankar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信