母语和非母语英语使用者语音生物识别中的口音分类

Jordan J. Bird, E. Wanner, A. Ekárt, D. Faria
{"title":"母语和非母语英语使用者语音生物识别中的口音分类","authors":"Jordan J. Bird, E. Wanner, A. Ekárt, D. Faria","doi":"10.1145/3316782.3322780","DOIUrl":null,"url":null,"abstract":"Accent classification provides a biometric path to high resolution speech recognition. This preliminary study explores various methods of human accent recognition through classification of locale. Classical, ensemble, timeseries and deep learning techniques are all explored and compared. A set of diphthong vowel sounds are recorded from participants from the United Kingdom and Mexico, and then formed into a large static dataset of statistical descriptions by way of their Mel-frequency Cepstral Coefficients (MFCC) at a sample window length of 0.02 seconds. Using both flat and timeseries data, various machine learning models are trained and compared to the scientific standard Hidden Markov Model (HMM). Results through 10 fold cross validation show that a vote of average probabilities between a Random Forest and Long Short-term Memory Neural Network result in a classification accuracy of 94.74%, outperforming the speech classification standard Hidden Markov Model by a 5% increase in accuracy.","PeriodicalId":264425,"journal":{"name":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Accent classification in human speech biometrics for native and non-native english speakers\",\"authors\":\"Jordan J. Bird, E. Wanner, A. Ekárt, D. Faria\",\"doi\":\"10.1145/3316782.3322780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accent classification provides a biometric path to high resolution speech recognition. This preliminary study explores various methods of human accent recognition through classification of locale. Classical, ensemble, timeseries and deep learning techniques are all explored and compared. A set of diphthong vowel sounds are recorded from participants from the United Kingdom and Mexico, and then formed into a large static dataset of statistical descriptions by way of their Mel-frequency Cepstral Coefficients (MFCC) at a sample window length of 0.02 seconds. Using both flat and timeseries data, various machine learning models are trained and compared to the scientific standard Hidden Markov Model (HMM). Results through 10 fold cross validation show that a vote of average probabilities between a Random Forest and Long Short-term Memory Neural Network result in a classification accuracy of 94.74%, outperforming the speech classification standard Hidden Markov Model by a 5% increase in accuracy.\",\"PeriodicalId\":264425,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316782.3322780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316782.3322780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

口音分类为高分辨率语音识别提供了一条生物识别途径。本文初步探讨了通过地域分类来识别人类口音的各种方法。经典、合奏、时间序列和深度学习技术都进行了探索和比较。从英国和墨西哥的参与者中记录一组双元音,然后在0.02秒的样本窗口长度下,通过他们的mel频率倒谱系数(MFCC)形成一个大型的静态统计描述数据集。使用平面和时间序列数据,训练各种机器学习模型,并将其与科学标准的隐马尔可夫模型(HMM)进行比较。通过10倍交叉验证的结果表明,随机森林和长短期记忆神经网络之间的平均概率投票结果的分类准确率为94.74%,比语音分类标准隐马尔可夫模型的准确率提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accent classification in human speech biometrics for native and non-native english speakers
Accent classification provides a biometric path to high resolution speech recognition. This preliminary study explores various methods of human accent recognition through classification of locale. Classical, ensemble, timeseries and deep learning techniques are all explored and compared. A set of diphthong vowel sounds are recorded from participants from the United Kingdom and Mexico, and then formed into a large static dataset of statistical descriptions by way of their Mel-frequency Cepstral Coefficients (MFCC) at a sample window length of 0.02 seconds. Using both flat and timeseries data, various machine learning models are trained and compared to the scientific standard Hidden Markov Model (HMM). Results through 10 fold cross validation show that a vote of average probabilities between a Random Forest and Long Short-term Memory Neural Network result in a classification accuracy of 94.74%, outperforming the speech classification standard Hidden Markov Model by a 5% increase in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信