Stanford I2V:用于图像查询实验的新闻视频数据集

A. Araújo, J. Chaves, David M. Chen, Roland Angst, B. Girod
{"title":"Stanford I2V:用于图像查询实验的新闻视频数据集","authors":"A. Araújo, J. Chaves, David M. Chen, Roland Angst, B. Girod","doi":"10.1145/2713168.2713197","DOIUrl":null,"url":null,"abstract":"Reproducible research in the area of visual search depends on the availability of large annotated datasets. In this paper, we address the problem of querying a video database by images that might share some contents with one or more video clips. We present a new large dataset, called Stanford I2V. We have collected more than 3; 800 hours of newscast videos and annotated more than 200 ground-truth queries. In the following, the dataset is described in detail, the collection methodology is outlined and retrieval performance for a benchmark algorithm is presented. These results may serve as a baseline for future research and provide an example of the intended use of the Stanford I2V dataset. The dataset can be downloaded at http://purl.stanford.edu/zx935qw7203.","PeriodicalId":202494,"journal":{"name":"Proceedings of the 6th ACM Multimedia Systems Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Stanford I2V: a news video dataset for query-by-image experiments\",\"authors\":\"A. Araújo, J. Chaves, David M. Chen, Roland Angst, B. Girod\",\"doi\":\"10.1145/2713168.2713197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reproducible research in the area of visual search depends on the availability of large annotated datasets. In this paper, we address the problem of querying a video database by images that might share some contents with one or more video clips. We present a new large dataset, called Stanford I2V. We have collected more than 3; 800 hours of newscast videos and annotated more than 200 ground-truth queries. In the following, the dataset is described in detail, the collection methodology is outlined and retrieval performance for a benchmark algorithm is presented. These results may serve as a baseline for future research and provide an example of the intended use of the Stanford I2V dataset. The dataset can be downloaded at http://purl.stanford.edu/zx935qw7203.\",\"PeriodicalId\":202494,\"journal\":{\"name\":\"Proceedings of the 6th ACM Multimedia Systems Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2713168.2713197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2713168.2713197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

视觉搜索领域的可重复性研究依赖于大型注释数据集的可用性。在本文中,我们解决了通过图像查询视频数据库的问题,这些图像可能与一个或多个视频片段共享某些内容。我们提出了一个新的大型数据集,叫做Stanford I2V。我们已经收集了3个以上;800小时的新闻视频和超过200个真实问题的注释。在下面,详细描述了数据集,概述了收集方法,并介绍了基准算法的检索性能。这些结果可以作为未来研究的基线,并提供斯坦福I2V数据集预期使用的示例。该数据集可从http://purl.stanford.edu/zx935qw7203下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stanford I2V: a news video dataset for query-by-image experiments
Reproducible research in the area of visual search depends on the availability of large annotated datasets. In this paper, we address the problem of querying a video database by images that might share some contents with one or more video clips. We present a new large dataset, called Stanford I2V. We have collected more than 3; 800 hours of newscast videos and annotated more than 200 ground-truth queries. In the following, the dataset is described in detail, the collection methodology is outlined and retrieval performance for a benchmark algorithm is presented. These results may serve as a baseline for future research and provide an example of the intended use of the Stanford I2V dataset. The dataset can be downloaded at http://purl.stanford.edu/zx935qw7203.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信