自动生成程序的一类参数神经进化算法

A. Doroshenko, I. Achour
{"title":"自动生成程序的一类参数神经进化算法","authors":"A. Doroshenko, I. Achour","doi":"10.15407/pp2022.03-04.301","DOIUrl":null,"url":null,"abstract":"The facilities of algebra of hyperschemes are applied for automated generation of neuroevolution algorithms on an example of a binary multiplexer evaluation problem, which is a part of the SharpNEAT system. SharpNEAT is an open-source framework developed in C# programming language, which implements a genetic neuroevolution algorithm for the .NET platform. Neuroevolution is a form of artificial intelligence, which uses evolution algorithms for creating neural networks, parameters, topology, and rules. Evolution algorithms apply mutation, recombination, and selection mechanisms for finding neural networks with behavior that satisfies to conditions of some formally defined problem. In this paper, we demonstrate the use of algebra of algorithms and hyperschemes for the automated generation of evaluation programs for neuroevolution problems. Hyperscheme is a high-level parameterized specification of an algorithm for solving some class of problems. Setting the values of the hyperscheme parameters and further interpretation of a hyperscheme allows obtaining algorithms adapted to specific conditions of their use. Automated construction of hyperschemes and generation of algorithms based on them is implemented in the developed integrated toolkit for design and synthesis of programs. The design of algorithms is based on Glushkov systems of algorithmic algebra. The schemes are built using a dialogue constructor of syntactically correct programs, which consists in descending design of algorithms by detailing the constructions of algorithmic language. The design is represented as an algorithm tree. Based on algorithm schemes, programs in a target programming language are generated. The results of the experiment consisting in executing the generated binary multiplexer evaluating program on a cloud platform are given.","PeriodicalId":313885,"journal":{"name":"PROBLEMS IN PROGRAMMING","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated generation of programs for a class of parametric neuroevolution algorithms\",\"authors\":\"A. Doroshenko, I. Achour\",\"doi\":\"10.15407/pp2022.03-04.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The facilities of algebra of hyperschemes are applied for automated generation of neuroevolution algorithms on an example of a binary multiplexer evaluation problem, which is a part of the SharpNEAT system. SharpNEAT is an open-source framework developed in C# programming language, which implements a genetic neuroevolution algorithm for the .NET platform. Neuroevolution is a form of artificial intelligence, which uses evolution algorithms for creating neural networks, parameters, topology, and rules. Evolution algorithms apply mutation, recombination, and selection mechanisms for finding neural networks with behavior that satisfies to conditions of some formally defined problem. In this paper, we demonstrate the use of algebra of algorithms and hyperschemes for the automated generation of evaluation programs for neuroevolution problems. Hyperscheme is a high-level parameterized specification of an algorithm for solving some class of problems. Setting the values of the hyperscheme parameters and further interpretation of a hyperscheme allows obtaining algorithms adapted to specific conditions of their use. Automated construction of hyperschemes and generation of algorithms based on them is implemented in the developed integrated toolkit for design and synthesis of programs. The design of algorithms is based on Glushkov systems of algorithmic algebra. The schemes are built using a dialogue constructor of syntactically correct programs, which consists in descending design of algorithms by detailing the constructions of algorithmic language. The design is represented as an algorithm tree. Based on algorithm schemes, programs in a target programming language are generated. The results of the experiment consisting in executing the generated binary multiplexer evaluating program on a cloud platform are given.\",\"PeriodicalId\":313885,\"journal\":{\"name\":\"PROBLEMS IN PROGRAMMING\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROBLEMS IN PROGRAMMING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pp2022.03-04.301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS IN PROGRAMMING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pp2022.03-04.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以SharpNEAT系统中的二进制多路复用器求值问题为例,将超方案代数的功能应用于神经进化算法的自动生成。SharpNEAT是一个用c#编程语言开发的开源框架,它实现了。net平台的遗传神经进化算法。神经进化是人工智能的一种形式,它使用进化算法来创建神经网络、参数、拓扑和规则。进化算法应用突变、重组和选择机制来寻找具有满足某些正式定义问题条件的行为的神经网络。在本文中,我们展示了使用代数算法和超方案来自动生成神经进化问题的评估程序。超方案是解决一类问题的算法的高级参数化规范。设置超模式参数的值和对超模式的进一步解释允许获得适合其使用的特定条件的算法。在开发的程序设计和综合集成工具包中,实现了超方案的自动构建和基于超方案的算法生成。算法的设计基于算法代数的格鲁什科夫系统。该方案使用语法正确的程序的对话构造函数来构建,该构造函数通过详细描述算法语言的结构来实现算法的递减设计。该设计用算法树表示。基于算法方案,生成目标编程语言的程序。给出了在云平台上执行所生成的二进制多路复用器评估程序的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated generation of programs for a class of parametric neuroevolution algorithms
The facilities of algebra of hyperschemes are applied for automated generation of neuroevolution algorithms on an example of a binary multiplexer evaluation problem, which is a part of the SharpNEAT system. SharpNEAT is an open-source framework developed in C# programming language, which implements a genetic neuroevolution algorithm for the .NET platform. Neuroevolution is a form of artificial intelligence, which uses evolution algorithms for creating neural networks, parameters, topology, and rules. Evolution algorithms apply mutation, recombination, and selection mechanisms for finding neural networks with behavior that satisfies to conditions of some formally defined problem. In this paper, we demonstrate the use of algebra of algorithms and hyperschemes for the automated generation of evaluation programs for neuroevolution problems. Hyperscheme is a high-level parameterized specification of an algorithm for solving some class of problems. Setting the values of the hyperscheme parameters and further interpretation of a hyperscheme allows obtaining algorithms adapted to specific conditions of their use. Automated construction of hyperschemes and generation of algorithms based on them is implemented in the developed integrated toolkit for design and synthesis of programs. The design of algorithms is based on Glushkov systems of algorithmic algebra. The schemes are built using a dialogue constructor of syntactically correct programs, which consists in descending design of algorithms by detailing the constructions of algorithmic language. The design is represented as an algorithm tree. Based on algorithm schemes, programs in a target programming language are generated. The results of the experiment consisting in executing the generated binary multiplexer evaluating program on a cloud platform are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信