用于网络编码的伽罗瓦现场硬件体系结构

Aishwarya Nagarajan, M. Schulte, P. Ramanathan
{"title":"用于网络编码的伽罗瓦现场硬件体系结构","authors":"Aishwarya Nagarajan, M. Schulte, P. Ramanathan","doi":"10.1145/1872007.1872051","DOIUrl":null,"url":null,"abstract":"This paper presents and analyzes novel hardware designs for high-speed network coding. Our designs provide efficient methods to perform Galois field (GF) dot products and matrix inversions, which are important operations in network coding. Encoder designs that perform GF dot products and vary with respect to the number of messages combined, Galois field size, and input message size are implemented and analyzed to evaluate design tradeoffs. We investigate single cycle, multicycle, and pipelined designs with and without feedback mechanisms for encoding multiple sets of messages. The decoder is implemented as a multi-cycle design and performs GF matrix inversion followed by multiple GF dot products. Our designs are synthesized with a 65nm standard cell library and compared in terms of area, critical path delay, and throughput. Designs combining four messages achieve throughputs of more than 30 Gbps. Our designs can scale to achieve much higher throughput through the use of additional hardware.","PeriodicalId":262685,"journal":{"name":"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Galois field hardware architectures for network coding\",\"authors\":\"Aishwarya Nagarajan, M. Schulte, P. Ramanathan\",\"doi\":\"10.1145/1872007.1872051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and analyzes novel hardware designs for high-speed network coding. Our designs provide efficient methods to perform Galois field (GF) dot products and matrix inversions, which are important operations in network coding. Encoder designs that perform GF dot products and vary with respect to the number of messages combined, Galois field size, and input message size are implemented and analyzed to evaluate design tradeoffs. We investigate single cycle, multicycle, and pipelined designs with and without feedback mechanisms for encoding multiple sets of messages. The decoder is implemented as a multi-cycle design and performs GF matrix inversion followed by multiple GF dot products. Our designs are synthesized with a 65nm standard cell library and compared in terms of area, critical path delay, and throughput. Designs combining four messages achieve throughputs of more than 30 Gbps. Our designs can scale to achieve much higher throughput through the use of additional hardware.\",\"PeriodicalId\":262685,\"journal\":{\"name\":\"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1872007.1872051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1872007.1872051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出并分析了高速网络编码的新型硬件设计。我们的设计提供了有效的方法来执行伽罗瓦域(GF)点积和矩阵反演,这是网络编码中的重要操作。执行GF点积的编码器设计,并根据组合的消息数量、伽罗瓦字段大小和输入消息大小而变化,实现和分析以评估设计权衡。我们研究了单周期、多周期和流水线设计,有或没有反馈机制,用于编码多组消息。解码器实现为多周期设计,并执行GF矩阵反演,然后进行多个GF点积。我们的设计是用65nm标准细胞库合成的,并在面积、关键路径延迟和吞吐量方面进行了比较。结合四个消息的设计实现了超过30gbps的吞吐量。我们的设计可以通过使用额外的硬件来扩展以实现更高的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois field hardware architectures for network coding
This paper presents and analyzes novel hardware designs for high-speed network coding. Our designs provide efficient methods to perform Galois field (GF) dot products and matrix inversions, which are important operations in network coding. Encoder designs that perform GF dot products and vary with respect to the number of messages combined, Galois field size, and input message size are implemented and analyzed to evaluate design tradeoffs. We investigate single cycle, multicycle, and pipelined designs with and without feedback mechanisms for encoding multiple sets of messages. The decoder is implemented as a multi-cycle design and performs GF matrix inversion followed by multiple GF dot products. Our designs are synthesized with a 65nm standard cell library and compared in terms of area, critical path delay, and throughput. Designs combining four messages achieve throughputs of more than 30 Gbps. Our designs can scale to achieve much higher throughput through the use of additional hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信