可预测的3d智能设备

K. Scherer, Sebastian Bast, Julien Murach, Stephan Didas, Guido Dartmann, M. Wahl
{"title":"可预测的3d智能设备","authors":"K. Scherer, Sebastian Bast, Julien Murach, Stephan Didas, Guido Dartmann, M. Wahl","doi":"10.30844/im_23-2_56-59","DOIUrl":null,"url":null,"abstract":"Die additive Fertigung ist eine zunehmend an Bedeutung gewinnende Fertigungstechnologie mit einem großen wirtschaftlichen Potenzial. Ihre Beliebtheit geht jedoch mit hohen Material- und Zeitverlusten einher, da fehlerbehaftete Werkstücke in vielen Fällen erst sehr spät im Fertigungsprozess erkannt werden. Ein Lösungsansatz für eine nachhaltigere und effizientere Produktion ist das automatisierte und frühzeitige Erkennen von Fertigungsfehlern mit Verfahren der Künstlichen Intelligenz. Dieser Beitrag beschreibt die Digitalisierung des Fehlererkennungsprozesses im 3D-Druck mithilfe eines bildbasierten, lernenden Systems. Dabei wird neben den einzelnen Arbeitsschritten zur automatisierten Fehlererkennung auch auf die Leistung des Systems eingegangen.","PeriodicalId":346026,"journal":{"name":"Industrie 4.0 Management","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nachhaltige und intelligente additive Fertigung – Frühzeitige Erkennung von Produktionsfehlern im 3D-Druck durch Künstliche Intelligenz\",\"authors\":\"K. Scherer, Sebastian Bast, Julien Murach, Stephan Didas, Guido Dartmann, M. Wahl\",\"doi\":\"10.30844/im_23-2_56-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Die additive Fertigung ist eine zunehmend an Bedeutung gewinnende Fertigungstechnologie mit einem großen wirtschaftlichen Potenzial. Ihre Beliebtheit geht jedoch mit hohen Material- und Zeitverlusten einher, da fehlerbehaftete Werkstücke in vielen Fällen erst sehr spät im Fertigungsprozess erkannt werden. Ein Lösungsansatz für eine nachhaltigere und effizientere Produktion ist das automatisierte und frühzeitige Erkennen von Fertigungsfehlern mit Verfahren der Künstlichen Intelligenz. Dieser Beitrag beschreibt die Digitalisierung des Fehlererkennungsprozesses im 3D-Druck mithilfe eines bildbasierten, lernenden Systems. Dabei wird neben den einzelnen Arbeitsschritten zur automatisierten Fehlererkennung auch auf die Leistung des Systems eingegangen.\",\"PeriodicalId\":346026,\"journal\":{\"name\":\"Industrie 4.0 Management\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrie 4.0 Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30844/im_23-2_56-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrie 4.0 Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30844/im_23-2_56-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生产品是一个日益重要、具有庞大经济潜力的制造技术产品。但是,这种工人的受欢迎程度往往是由于材料和时间的损失,而且,大多数情况下,错误的组件在制造过程中出现得都非常晚。试一试更有效、更可持续的生产方法就是使用人工智能程序,自动、早发现制造错误。本文描述了基于图像系统对错误识别过程的数字化描述。除了实施自动化错误识别的不同步骤外,它还包括系统的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nachhaltige und intelligente additive Fertigung – Frühzeitige Erkennung von Produktionsfehlern im 3D-Druck durch Künstliche Intelligenz
Die additive Fertigung ist eine zunehmend an Bedeutung gewinnende Fertigungstechnologie mit einem großen wirtschaftlichen Potenzial. Ihre Beliebtheit geht jedoch mit hohen Material- und Zeitverlusten einher, da fehlerbehaftete Werkstücke in vielen Fällen erst sehr spät im Fertigungsprozess erkannt werden. Ein Lösungsansatz für eine nachhaltigere und effizientere Produktion ist das automatisierte und frühzeitige Erkennen von Fertigungsfehlern mit Verfahren der Künstlichen Intelligenz. Dieser Beitrag beschreibt die Digitalisierung des Fehlererkennungsprozesses im 3D-Druck mithilfe eines bildbasierten, lernenden Systems. Dabei wird neben den einzelnen Arbeitsschritten zur automatisierten Fehlererkennung auch auf die Leistung des Systems eingegangen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信