海报:使边缘辅助激光雷达感知对有损点云压缩具有鲁棒性

Jin Heo, Gregoire Phillips, Per-Erik Brodin, Ada Gavrilovska
{"title":"海报:使边缘辅助激光雷达感知对有损点云压缩具有鲁棒性","authors":"Jin Heo, Gregoire Phillips, Per-Erik Brodin, Ada Gavrilovska","doi":"10.1109/SEC54971.2022.00036","DOIUrl":null,"url":null,"abstract":"Real-time light detection and ranging (LiDAR) perceptions, e.g., 3D object detection and simultaneous localization and mapping are computationally intensive to mobile devices of limited resources and often offloaded on the edge. Offloading Li-DAR perceptions requires compressing the raw sensor data, and lossy compression is used for efficiently reducing the data volume. Lossy compression degrades the quality of LiDAR point clouds, and the perception performance is decreased consequently. In this work, we present an interpolation algorithm improving the quality of a LiDAR point cloud to mitigate the perception performance loss due to lossy compression. The algorithm targets the range image (RI) representation of a point cloud and interpolates points at the RI based on depth gradients. Compared to existing image interpolation algorithms, our algorithm shows a better qualitative result when the point cloud is reconstructed from the interpolated RI. With the preliminary results, we also describe the next steps of the current work.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Making Edge-assisted LiDAR Perceptions Robust to Lossy Point Cloud Compression\",\"authors\":\"Jin Heo, Gregoire Phillips, Per-Erik Brodin, Ada Gavrilovska\",\"doi\":\"10.1109/SEC54971.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time light detection and ranging (LiDAR) perceptions, e.g., 3D object detection and simultaneous localization and mapping are computationally intensive to mobile devices of limited resources and often offloaded on the edge. Offloading Li-DAR perceptions requires compressing the raw sensor data, and lossy compression is used for efficiently reducing the data volume. Lossy compression degrades the quality of LiDAR point clouds, and the perception performance is decreased consequently. In this work, we present an interpolation algorithm improving the quality of a LiDAR point cloud to mitigate the perception performance loss due to lossy compression. The algorithm targets the range image (RI) representation of a point cloud and interpolates points at the RI based on depth gradients. Compared to existing image interpolation algorithms, our algorithm shows a better qualitative result when the point cloud is reconstructed from the interpolated RI. With the preliminary results, we also describe the next steps of the current work.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时光探测和测距(LiDAR)感知,例如,3D物体检测和同时定位和映射对于资源有限的移动设备来说是计算密集型的,并且经常在边缘卸载。卸载Li-DAR感知需要压缩原始传感器数据,有损压缩用于有效减少数据量。有损压缩降低了激光雷达点云的质量,降低了激光雷达点云的感知性能。在这项工作中,我们提出了一种提高激光雷达点云质量的插值算法,以减轻因有损压缩而导致的感知性能损失。该算法以点云的距离图像(RI)表示为目标,并基于深度梯度在RI上插值点。与现有的图像插值算法相比,我们的算法在插值后的RI重建点云时显示出更好的定性结果。根据初步结果,我们还描述了当前工作的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Making Edge-assisted LiDAR Perceptions Robust to Lossy Point Cloud Compression
Real-time light detection and ranging (LiDAR) perceptions, e.g., 3D object detection and simultaneous localization and mapping are computationally intensive to mobile devices of limited resources and often offloaded on the edge. Offloading Li-DAR perceptions requires compressing the raw sensor data, and lossy compression is used for efficiently reducing the data volume. Lossy compression degrades the quality of LiDAR point clouds, and the perception performance is decreased consequently. In this work, we present an interpolation algorithm improving the quality of a LiDAR point cloud to mitigate the perception performance loss due to lossy compression. The algorithm targets the range image (RI) representation of a point cloud and interpolates points at the RI based on depth gradients. Compared to existing image interpolation algorithms, our algorithm shows a better qualitative result when the point cloud is reconstructed from the interpolated RI. With the preliminary results, we also describe the next steps of the current work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信