基于Walabot和机器学习的非接触式锂离子电池电压检测

Yanan Wang, Haoyu Niu, Tiebiao Zhao, X. Liao, Lei Dong, Y. Chen
{"title":"基于Walabot和机器学习的非接触式锂离子电池电压检测","authors":"Yanan Wang, Haoyu Niu, Tiebiao Zhao, X. Liao, Lei Dong, Y. Chen","doi":"10.1115/detc2019-97668","DOIUrl":null,"url":null,"abstract":"\n This paper has proposed a contactless voltage classification method for Lithium-ion batteries (LIBs). With a three-dimensional radio-frequency based sensor called Walabot, voltage data of LIBs can be collected in a contactless way. Then three machine learning algorithm, that is, principal component analysis (PCA), linear discriminant analysis (LDA), and stochastic gradient descent (SGD) classifiers, have been employed for data processing. Experiments and comparison have been conducted to verify the proposed method. The colormaps of results and prediction accuracy show that LDA may be most suitable for LIBs voltage classification.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Contactless Li-Ion Battery Voltage Detection by Using Walabot and Machine Learning\",\"authors\":\"Yanan Wang, Haoyu Niu, Tiebiao Zhao, X. Liao, Lei Dong, Y. Chen\",\"doi\":\"10.1115/detc2019-97668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper has proposed a contactless voltage classification method for Lithium-ion batteries (LIBs). With a three-dimensional radio-frequency based sensor called Walabot, voltage data of LIBs can be collected in a contactless way. Then three machine learning algorithm, that is, principal component analysis (PCA), linear discriminant analysis (LDA), and stochastic gradient descent (SGD) classifiers, have been employed for data processing. Experiments and comparison have been conducted to verify the proposed method. The colormaps of results and prediction accuracy show that LDA may be most suitable for LIBs voltage classification.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种锂离子电池的非接触电压分类方法。使用三维射频传感器Walabot,可以以非接触方式收集lib的电压数据。然后采用主成分分析(PCA)、线性判别分析(LDA)和随机梯度下降(SGD)分类器三种机器学习算法对数据进行处理。实验和比较验证了所提出的方法。结果的颜色图和预测精度表明LDA可能最适合LIBs电压分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contactless Li-Ion Battery Voltage Detection by Using Walabot and Machine Learning
This paper has proposed a contactless voltage classification method for Lithium-ion batteries (LIBs). With a three-dimensional radio-frequency based sensor called Walabot, voltage data of LIBs can be collected in a contactless way. Then three machine learning algorithm, that is, principal component analysis (PCA), linear discriminant analysis (LDA), and stochastic gradient descent (SGD) classifiers, have been employed for data processing. Experiments and comparison have been conducted to verify the proposed method. The colormaps of results and prediction accuracy show that LDA may be most suitable for LIBs voltage classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信