{"title":"多频带调相无线电在均衡相干同差检测的等温链路上","authors":"K. Zong, Jiang Zhu","doi":"10.1117/12.2288133","DOIUrl":null,"url":null,"abstract":"In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.","PeriodicalId":415022,"journal":{"name":"International Conference on Wireless and Optical Communications","volume":"20 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection\",\"authors\":\"K. Zong, Jiang Zhu\",\"doi\":\"10.1117/12.2288133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.\",\"PeriodicalId\":415022,\"journal\":{\"name\":\"International Conference on Wireless and Optical Communications\",\"volume\":\"20 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Wireless and Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2288133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless and Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2288133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection
In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.