基于多基因符号回归遗传规划的软件工作量估算模型

S. Aljahdali, A. Sheta
{"title":"基于多基因符号回归遗传规划的软件工作量估算模型","authors":"S. Aljahdali, A. Sheta","doi":"10.14569/IJARAI.2013.021207","DOIUrl":null,"url":null,"abstract":"Software has played an essential role in engineering,\neconomic development, stock market growth and military\napplications. Mature software industry count on highly predictive\nsoftware effort estimation models. Correct estimation of software\neffort lead to correct estimation of budget and development time.\nIt also allows companies to develop appropriate time plan for\nmarketing campaign. Now a day it became a great challenge to get\nthese estimates due to the increasing number of attributes which\naffect the software development life cycle. Software cost estimation\nmodels should be able to provide sufficient confidence on its\nprediction capabilities. Recently, Computational Intelligence (CI)\nparadigms were explored to handle the software effort estimation\nproblem with promising results. In this paper we evolve two new\nmodels for software effort estimation using Multigene Symbolic\nRegression Genetic Programming (GP). One model utilizes the\nSource Line Of Code (SLOC) as input variable to estimate the\nEffort (E); while the second model utilize the Inputs, Outputs,\nFiles, and User Inquiries to estimate the Function Point (FP).\nThe proposed GP models show better estimation capabilities compared\nto other reported models in the literature. The validation\nresults are accepted based Albrecht data set.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming\",\"authors\":\"S. Aljahdali, A. Sheta\",\"doi\":\"10.14569/IJARAI.2013.021207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software has played an essential role in engineering,\\neconomic development, stock market growth and military\\napplications. Mature software industry count on highly predictive\\nsoftware effort estimation models. Correct estimation of software\\neffort lead to correct estimation of budget and development time.\\nIt also allows companies to develop appropriate time plan for\\nmarketing campaign. Now a day it became a great challenge to get\\nthese estimates due to the increasing number of attributes which\\naffect the software development life cycle. Software cost estimation\\nmodels should be able to provide sufficient confidence on its\\nprediction capabilities. Recently, Computational Intelligence (CI)\\nparadigms were explored to handle the software effort estimation\\nproblem with promising results. In this paper we evolve two new\\nmodels for software effort estimation using Multigene Symbolic\\nRegression Genetic Programming (GP). One model utilizes the\\nSource Line Of Code (SLOC) as input variable to estimate the\\nEffort (E); while the second model utilize the Inputs, Outputs,\\nFiles, and User Inquiries to estimate the Function Point (FP).\\nThe proposed GP models show better estimation capabilities compared\\nto other reported models in the literature. The validation\\nresults are accepted based Albrecht data set.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2013.021207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2013.021207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

软件在工程、经济发展、股票市场增长和军事应用中发挥了至关重要的作用。成熟的软件行业依赖于高度可预测的软件工作量估计模型。对软件工作量的正确估计会导致对预算和开发时间的正确估计。它还允许公司为营销活动制定适当的时间计划。现在,由于影响软件开发生命周期的属性数量的增加,获得这些评估成为一个巨大的挑战。软件成本估算模型应该能够对其预测能力提供足够的信心。近年来,计算智能(CI)范式被用于处理软件工作量估算问题,并取得了可喜的成果。本文利用多基因符号回归遗传规划(GP)提出了两个新的软件工作量估计模型。一个模型利用源代码行(SLOC)作为输入变量来估计工作量(E);而第二个模型利用输入、输出、文件和用户查询来估计功能点(FP)。与文献中报道的其他模型相比,所提出的GP模型显示出更好的估计能力。基于Albrecht数据集的验证结果被接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming
Software has played an essential role in engineering, economic development, stock market growth and military applications. Mature software industry count on highly predictive software effort estimation models. Correct estimation of software effort lead to correct estimation of budget and development time. It also allows companies to develop appropriate time plan for marketing campaign. Now a day it became a great challenge to get these estimates due to the increasing number of attributes which affect the software development life cycle. Software cost estimation models should be able to provide sufficient confidence on its prediction capabilities. Recently, Computational Intelligence (CI) paradigms were explored to handle the software effort estimation problem with promising results. In this paper we evolve two new models for software effort estimation using Multigene Symbolic Regression Genetic Programming (GP). One model utilizes the Source Line Of Code (SLOC) as input variable to estimate the Effort (E); while the second model utilize the Inputs, Outputs, Files, and User Inquiries to estimate the Function Point (FP). The proposed GP models show better estimation capabilities compared to other reported models in the literature. The validation results are accepted based Albrecht data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信