基于支持向量回归的模糊建模新方法

Long Yu, Jian Xiao, Yifeng Bai
{"title":"基于支持向量回归的模糊建模新方法","authors":"Long Yu, Jian Xiao, Yifeng Bai","doi":"10.1109/FSKD.2007.78","DOIUrl":null,"url":null,"abstract":"New interpretable kernels created by conjoining the univariate fuzzy membership functions with a t-norm operator are proposed in this paper. Based on support vector regression with presented kernel, a learning algorithm consisting of two phases is developed to construct fuzzy system. In the first phase, the support vector regression learning model provides architecture to extract support vectors for generating fuzzy rules, and then characterizes the support vector expansion in TS fuzzy inference procedure through simple equivalent transform. In the second phase, a reduced set method is employed to simplify the obtained fuzzy model, and a bottom-up strategy with relative degree of sharing is suggested to obtain a transparent rule base, at the same time preserves the accuracy and generalization performance of the fuzzy model. Finally, the performance of the proposed fuzzy model is compared with hierarchical clustering based on using a self-organizing network modeling methods.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Fuzzy Modeling Approach Based on Support Vector Regression\",\"authors\":\"Long Yu, Jian Xiao, Yifeng Bai\",\"doi\":\"10.1109/FSKD.2007.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New interpretable kernels created by conjoining the univariate fuzzy membership functions with a t-norm operator are proposed in this paper. Based on support vector regression with presented kernel, a learning algorithm consisting of two phases is developed to construct fuzzy system. In the first phase, the support vector regression learning model provides architecture to extract support vectors for generating fuzzy rules, and then characterizes the support vector expansion in TS fuzzy inference procedure through simple equivalent transform. In the second phase, a reduced set method is employed to simplify the obtained fuzzy model, and a bottom-up strategy with relative degree of sharing is suggested to obtain a transparent rule base, at the same time preserves the accuracy and generalization performance of the fuzzy model. Finally, the performance of the proposed fuzzy model is compared with hierarchical clustering based on using a self-organizing network modeling methods.\",\"PeriodicalId\":201883,\"journal\":{\"name\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2007.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种将单变量模糊隶属函数与t范数算子相结合的新可解释核。基于所提出的核支持向量回归,提出了一种两阶段学习算法来构建模糊系统。在第一阶段,支持向量回归学习模型提供了用于生成模糊规则的支持向量的提取架构,然后通过简单的等价变换表征了TS模糊推理过程中支持向量的展开。第二阶段,采用约简集方法对得到的模糊模型进行简化,并提出一种具有相对共享度的自底向上策略,以获得透明的规则库,同时保持模糊模型的准确性和泛化性能。最后,将该模糊模型的性能与基于自组织网络建模方法的层次聚类进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Fuzzy Modeling Approach Based on Support Vector Regression
New interpretable kernels created by conjoining the univariate fuzzy membership functions with a t-norm operator are proposed in this paper. Based on support vector regression with presented kernel, a learning algorithm consisting of two phases is developed to construct fuzzy system. In the first phase, the support vector regression learning model provides architecture to extract support vectors for generating fuzzy rules, and then characterizes the support vector expansion in TS fuzzy inference procedure through simple equivalent transform. In the second phase, a reduced set method is employed to simplify the obtained fuzzy model, and a bottom-up strategy with relative degree of sharing is suggested to obtain a transparent rule base, at the same time preserves the accuracy and generalization performance of the fuzzy model. Finally, the performance of the proposed fuzzy model is compared with hierarchical clustering based on using a self-organizing network modeling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信