如何找到政客在推特上使用的相关词汇?

L. S. Oliveira, Pedro O. S. Vaz de Melo
{"title":"如何找到政客在推特上使用的相关词汇?","authors":"L. S. Oliveira, Pedro O. S. Vaz de Melo","doi":"10.1145/3126858.3131590","DOIUrl":null,"url":null,"abstract":"The dynamics of society are constantly changing by social media. Twitter has been standing out as one of the main platforms for infor- mation discovery and its political use have been growing since 2008. In this work we collected the public deputies tweets between 2013 and 2015 for topic extraction by means of computational models. However, due to the large number of irrelevant words from the data dictionary, we used tf-idf and Shannon's entropy to identify and select relevant political words.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to Find the Relevant Words Politicians Use in Twitter?\",\"authors\":\"L. S. Oliveira, Pedro O. S. Vaz de Melo\",\"doi\":\"10.1145/3126858.3131590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of society are constantly changing by social media. Twitter has been standing out as one of the main platforms for infor- mation discovery and its political use have been growing since 2008. In this work we collected the public deputies tweets between 2013 and 2015 for topic extraction by means of computational models. However, due to the large number of irrelevant words from the data dictionary, we used tf-idf and Shannon's entropy to identify and select relevant political words.\",\"PeriodicalId\":338362,\"journal\":{\"name\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3126858.3131590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3131590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交媒体不断改变着社会的动态。作为信息发现的主要平台之一,Twitter已经脱颖而出,其政治用途自2008年以来一直在增长。在这项工作中,我们收集了2013年至2015年的公共代表推文,并通过计算模型进行主题提取。然而,由于数据字典中有大量不相关的词,我们使用tf-idf和Shannon’s熵来识别和选择相关的政治词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Find the Relevant Words Politicians Use in Twitter?
The dynamics of society are constantly changing by social media. Twitter has been standing out as one of the main platforms for infor- mation discovery and its political use have been growing since 2008. In this work we collected the public deputies tweets between 2013 and 2015 for topic extraction by means of computational models. However, due to the large number of irrelevant words from the data dictionary, we used tf-idf and Shannon's entropy to identify and select relevant political words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信