基于社交媒体的时空模型丰富交通信息

B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro
{"title":"基于社交媒体的时空模型丰富交通信息","authors":"B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro","doi":"10.1109/ISCC.2018.8538665","DOIUrl":null,"url":null,"abstract":"In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Enriching Traffic Information with a Spatiotemporal Model based on Social Media\",\"authors\":\"B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro\",\"doi\":\"10.1109/ISCC.2018.8538665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在这项工作中,我们认为基于位置的社交媒体(LBSM)提要可以提供一个新的层次来提高交通和交通的理解。最初,我们展示了Twitter feed和传统交通传感器之间的显著相关性。然后,我们提出了推特地图(T-MAPS)这一低成本的时空模型,通过推特来改进交通状况的描述。T-MAPS通过将人类镜头带入交通系统来增强传统的交通传感器。我们通过运行T-MAPS和Google Maps路线推荐进行了一个案例研究,在这个案例中,我们展示了T-MAPS作为额外的交通描述符的可行性。结果,我们注意到路线相似度的中位数达到62%,并且对于四分之一的评估轨迹,相似度达到75%到100%之间。此外,我们还提出了三种基于自然语言分析的路线描述服务,即路线情绪(route Sentiment, RS)、路线信息(route Information, RI)和区域标签(Area’Tags, AT),旨在增强路线信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriching Traffic Information with a Spatiotemporal Model based on Social Media
In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信