{"title":"一类广义伪相对论系统正解的对称性和单调性","authors":"Xueying Chen, Guanfeng Li, Sijia Bao","doi":"10.3934/cpaa.2022045","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we focus on a class of general pseudo-relativistic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} \\begin{cases} \\begin{aligned} &(-\\Delta+m^2)^su(x) = f(u(x), v(x)), \\\\ &(-\\Delta+m^2)^tv(x) = g(u(x), v(x)), \\end{aligned} \\end{cases} \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ m \\in (0, +\\infty) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">\\begin{document}$ s, t \\in (0,1) $\\end{document}</tex-math></inline-formula>. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems\",\"authors\":\"Xueying Chen, Guanfeng Li, Sijia Bao\",\"doi\":\"10.3934/cpaa.2022045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we focus on a class of general pseudo-relativistic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} \\\\begin{cases} \\\\begin{aligned} &(-\\\\Delta+m^2)^su(x) = f(u(x), v(x)), \\\\\\\\ &(-\\\\Delta+m^2)^tv(x) = g(u(x), v(x)), \\\\end{aligned} \\\\end{cases} \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ m \\\\in (0, +\\\\infty) $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ s, t \\\\in (0,1) $\\\\end{document}</tex-math></inline-formula>. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
In this paper, we focus on a class of general pseudo-relativistic systems \begin{document}$ \begin{equation*} \begin{cases} \begin{aligned} &(-\Delta+m^2)^su(x) = f(u(x), v(x)), \\ &(-\Delta+m^2)^tv(x) = g(u(x), v(x)), \end{aligned} \end{cases} \end{equation*} $\end{document} where \begin{document}$ m \in (0, +\infty) $\end{document} and \begin{document}$ s, t \in (0,1) $\end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.
where \begin{document}$ m \in (0, +\infty) $\end{document} and \begin{document}$ s, t \in (0,1) $\end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.