医学影像物联网中的人工智能:甲状腺癌检测的力量

D. Ivanova
{"title":"医学影像物联网中的人工智能:甲状腺癌检测的力量","authors":"D. Ivanova","doi":"10.1109/INFOTECH.2018.8510725","DOIUrl":null,"url":null,"abstract":"The paper proposed an approach for thyroid cancer detection based on artificial intelligence in Internet of Medical Imaging Things (IoMIT) ecosystem. Ultrasonic imaging collected in IoMIT ecosystem is the best way for thyroid cancer diagnosis. Image segmentation and detection of benign and malignant thyroid nodules is an important part of the proposed approach. It is implemented in Apache Spark using MLlib based on Convolutional Neural Networks (CNNs). Finally, the results of medical imaging analytics are discussed.","PeriodicalId":142221,"journal":{"name":"2018 International Conference on Information Technologies (InfoTech)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Artificial Intelligence in Internet of Medical Imaging Things: The Power of Thyroid Cancer Detection\",\"authors\":\"D. Ivanova\",\"doi\":\"10.1109/INFOTECH.2018.8510725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposed an approach for thyroid cancer detection based on artificial intelligence in Internet of Medical Imaging Things (IoMIT) ecosystem. Ultrasonic imaging collected in IoMIT ecosystem is the best way for thyroid cancer diagnosis. Image segmentation and detection of benign and malignant thyroid nodules is an important part of the proposed approach. It is implemented in Apache Spark using MLlib based on Convolutional Neural Networks (CNNs). Finally, the results of medical imaging analytics are discussed.\",\"PeriodicalId\":142221,\"journal\":{\"name\":\"2018 International Conference on Information Technologies (InfoTech)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information Technologies (InfoTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTECH.2018.8510725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTECH.2018.8510725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于医疗影像物联网(IoMIT)生态系统中人工智能的甲状腺癌检测方法。在IoMIT生态系统中采集的超声影像是诊断甲状腺癌的最佳方法。图像分割和良恶性甲状腺结节的检测是该方法的重要组成部分。它在Apache Spark中使用基于卷积神经网络(cnn)的MLlib实现。最后,讨论了医学影像分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in Internet of Medical Imaging Things: The Power of Thyroid Cancer Detection
The paper proposed an approach for thyroid cancer detection based on artificial intelligence in Internet of Medical Imaging Things (IoMIT) ecosystem. Ultrasonic imaging collected in IoMIT ecosystem is the best way for thyroid cancer diagnosis. Image segmentation and detection of benign and malignant thyroid nodules is an important part of the proposed approach. It is implemented in Apache Spark using MLlib based on Convolutional Neural Networks (CNNs). Finally, the results of medical imaging analytics are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信