基于单信号的环境感知理想二值掩码估计

T. May, T. Dau
{"title":"基于单信号的环境感知理想二值掩码估计","authors":"T. May, T. Dau","doi":"10.1109/WASPAA.2013.6701821","DOIUrl":null,"url":null,"abstract":"We present a monaural approach to speech segregation that estimates the ideal binary mask (IBM) by combining amplitude modulation spectrogram (AMS) features, pitch-based features and speech presence probability (SPP) features derived from noise statistics. To maintain a high mask estimation accuracy in the presence of various background noises, the system employs environment-specific segregation models and automatically selects the appropriate model for a given input signal. Furthermore, instead of classifying each time-frequency (T-F) unit independently, the a posteriori probabilities of speech and noise presence are evaluated by considering adjacent T-F units. The proposed system achieves high classification accuracy.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Environment-aware ideal binary mask estimation using monaural cues\",\"authors\":\"T. May, T. Dau\",\"doi\":\"10.1109/WASPAA.2013.6701821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a monaural approach to speech segregation that estimates the ideal binary mask (IBM) by combining amplitude modulation spectrogram (AMS) features, pitch-based features and speech presence probability (SPP) features derived from noise statistics. To maintain a high mask estimation accuracy in the presence of various background noises, the system employs environment-specific segregation models and automatically selects the appropriate model for a given input signal. Furthermore, instead of classifying each time-frequency (T-F) unit independently, the a posteriori probabilities of speech and noise presence are evaluated by considering adjacent T-F units. The proposed system achieves high classification accuracy.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种单耳的语音隔离方法,该方法通过结合调幅谱图(AMS)特征、基于音高的特征和从噪声统计中得出的语音存在概率(SPP)特征来估计理想二值掩码(IBM)。为了在各种背景噪声存在的情况下保持较高的掩模估计精度,该系统采用了特定于环境的分离模型,并为给定的输入信号自动选择合适的模型。此外,与独立分类每个时间-频率(T-F)单元不同,语音和噪声存在的后验概率通过考虑相邻的T-F单元来评估。该系统具有较高的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environment-aware ideal binary mask estimation using monaural cues
We present a monaural approach to speech segregation that estimates the ideal binary mask (IBM) by combining amplitude modulation spectrogram (AMS) features, pitch-based features and speech presence probability (SPP) features derived from noise statistics. To maintain a high mask estimation accuracy in the presence of various background noises, the system employs environment-specific segregation models and automatically selects the appropriate model for a given input signal. Furthermore, instead of classifying each time-frequency (T-F) unit independently, the a posteriori probabilities of speech and noise presence are evaluated by considering adjacent T-F units. The proposed system achieves high classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信