CIR过程的卡方模拟和Heston模型

S. Malham, Anke Wiese
{"title":"CIR过程的卡方模拟和Heston模型","authors":"S. Malham, Anke Wiese","doi":"10.1142/S0219024913500143","DOIUrl":null,"url":null,"abstract":"The transition probability of a Cox-Ingersoll-Ross process can be represented by a non-central chi-square density. First we prove a new representation for the central chi-square density based on sums of powers of generalized Gaussian random variables. Second we prove Marsaglia's polar method extends to this distribution, providing a simple, exact, robust and efficient acceptance-rejection method for generalized Gaussian sampling and thus central chi-square sampling. Third we derive a simple, high-accuracy, robust and efficient direct inversion method for generalized Gaussian sampling based on the Beasley-Springer-Moro method. Indeed the accuracy of the approximation to the inverse cumulative distribution function is to the tenth decimal place. We then apply our methods to non-central chi-square variance sampling in the Heston model. We focus on the case when the number of degrees of freedom is small and the zero boundary is attracting and attainable, typical in foreign exchange markets. Using the additivity property of the chi-square distribution, our methods apply in all parameter regimes.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Chi-square simulation of the CIR process and the Heston model\",\"authors\":\"S. Malham, Anke Wiese\",\"doi\":\"10.1142/S0219024913500143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition probability of a Cox-Ingersoll-Ross process can be represented by a non-central chi-square density. First we prove a new representation for the central chi-square density based on sums of powers of generalized Gaussian random variables. Second we prove Marsaglia's polar method extends to this distribution, providing a simple, exact, robust and efficient acceptance-rejection method for generalized Gaussian sampling and thus central chi-square sampling. Third we derive a simple, high-accuracy, robust and efficient direct inversion method for generalized Gaussian sampling based on the Beasley-Springer-Moro method. Indeed the accuracy of the approximation to the inverse cumulative distribution function is to the tenth decimal place. We then apply our methods to non-central chi-square variance sampling in the Heston model. We focus on the case when the number of degrees of freedom is small and the zero boundary is attracting and attainable, typical in foreign exchange markets. Using the additivity property of the chi-square distribution, our methods apply in all parameter regimes.\",\"PeriodicalId\":197400,\"journal\":{\"name\":\"arXiv: Computational Finance\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219024913500143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219024913500143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

Cox-Ingersoll-Ross过程的跃迁概率可以用非中心卡方密度表示。首先,我们证明了一种基于广义高斯随机变量幂和的中心卡方密度的新表示。其次,我们证明了Marsaglia的极坐标方法可以推广到这种分布,为广义高斯抽样和中心卡方抽样提供了一种简单、精确、鲁棒和有效的接受-拒绝方法。第三,基于Beasley-Springer-Moro方法,提出了一种简单、高精度、鲁棒、高效的广义高斯采样直接反演方法。实际上,逆累积分布函数的近似值精确到小数点后十位。然后,我们将我们的方法应用于赫斯顿模型中的非中心卡方方差抽样。我们关注的是自由度较小,且零边界具有吸引力和可实现性的情况,这是外汇市场的典型情况。利用卡方分布的可加性,我们的方法适用于所有参数范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chi-square simulation of the CIR process and the Heston model
The transition probability of a Cox-Ingersoll-Ross process can be represented by a non-central chi-square density. First we prove a new representation for the central chi-square density based on sums of powers of generalized Gaussian random variables. Second we prove Marsaglia's polar method extends to this distribution, providing a simple, exact, robust and efficient acceptance-rejection method for generalized Gaussian sampling and thus central chi-square sampling. Third we derive a simple, high-accuracy, robust and efficient direct inversion method for generalized Gaussian sampling based on the Beasley-Springer-Moro method. Indeed the accuracy of the approximation to the inverse cumulative distribution function is to the tenth decimal place. We then apply our methods to non-central chi-square variance sampling in the Heston model. We focus on the case when the number of degrees of freedom is small and the zero boundary is attracting and attainable, typical in foreign exchange markets. Using the additivity property of the chi-square distribution, our methods apply in all parameter regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信