基于组合无监督-监督分类的分层分类树

M. Mejdoub, C. Ben Amar
{"title":"基于组合无监督-监督分类的分层分类树","authors":"M. Mejdoub, C. Ben Amar","doi":"10.1109/INNOVATIONS.2011.5893800","DOIUrl":null,"url":null,"abstract":"K-nearest neighbor (KNN) classification is an instance-based learning algorithm that has shown to be very effective when classifying images described by local features. In this paper, we present a combined unsupervised and supervised classification tree based on local descriptors and the KNN algorithm. The proposed tree outperforms the classification accuracy of the exact KNN algorithm.","PeriodicalId":173102,"journal":{"name":"2011 International Conference on Innovations in Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical categorization tree based on a combined unsupervised-supervised classification\",\"authors\":\"M. Mejdoub, C. Ben Amar\",\"doi\":\"10.1109/INNOVATIONS.2011.5893800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-nearest neighbor (KNN) classification is an instance-based learning algorithm that has shown to be very effective when classifying images described by local features. In this paper, we present a combined unsupervised and supervised classification tree based on local descriptors and the KNN algorithm. The proposed tree outperforms the classification accuracy of the exact KNN algorithm.\",\"PeriodicalId\":173102,\"journal\":{\"name\":\"2011 International Conference on Innovations in Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Innovations in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INNOVATIONS.2011.5893800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Innovations in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2011.5893800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

k -最近邻(KNN)分类是一种基于实例的学习算法,在对局部特征描述的图像进行分类时非常有效。本文提出了一种基于局部描述符和KNN算法的组合无监督和监督分类树。该树的分类精度优于精确KNN算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical categorization tree based on a combined unsupervised-supervised classification
K-nearest neighbor (KNN) classification is an instance-based learning algorithm that has shown to be very effective when classifying images described by local features. In this paper, we present a combined unsupervised and supervised classification tree based on local descriptors and the KNN algorithm. The proposed tree outperforms the classification accuracy of the exact KNN algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信