利用SSA对数据进行预处理,增强持续振荡检测

Zekun Yang, M. Ghorbaniparvar, N. Zhou, Yu Chen
{"title":"利用SSA对数据进行预处理,增强持续振荡检测","authors":"Zekun Yang, M. Ghorbaniparvar, N. Zhou, Yu Chen","doi":"10.1109/NAPS.2017.8107367","DOIUrl":null,"url":null,"abstract":"Detecting sustained oscillations at their early stages can improve power system's situational awareness (SAW), and allows operators take remedial reactions to potential threatens to system's stability. Previously coherence spectrum based detection methods have been proposed to detect sustained oscillation in low signal-to-noise ratios (SNRs) using phasor measurement unit (PMU) data. However, their performance suffers long detection delays. In this paper, a pre-processing method based on Singular Spectrum Analysis (SSA) theory is proposed, which enables the self-coherence method to achieve shorter delay and lower false alarm rate using less operating data. Through extensive experimental study, the effectiveness of the proposed pre-processing procedure has been verified.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhancing sustained oscillation detection by data pre-processing using SSA\",\"authors\":\"Zekun Yang, M. Ghorbaniparvar, N. Zhou, Yu Chen\",\"doi\":\"10.1109/NAPS.2017.8107367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting sustained oscillations at their early stages can improve power system's situational awareness (SAW), and allows operators take remedial reactions to potential threatens to system's stability. Previously coherence spectrum based detection methods have been proposed to detect sustained oscillation in low signal-to-noise ratios (SNRs) using phasor measurement unit (PMU) data. However, their performance suffers long detection delays. In this paper, a pre-processing method based on Singular Spectrum Analysis (SSA) theory is proposed, which enables the self-coherence method to achieve shorter delay and lower false alarm rate using less operating data. Through extensive experimental study, the effectiveness of the proposed pre-processing procedure has been verified.\",\"PeriodicalId\":296428,\"journal\":{\"name\":\"2017 North American Power Symposium (NAPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2017.8107367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在早期阶段检测持续振荡可以提高电力系统的态势感知能力(SAW),并允许运营商对系统稳定性的潜在威胁采取补救措施。先前提出了基于相干谱的检测方法,利用相量测量单元(PMU)数据检测低信噪比(SNRs)下的持续振荡。然而,它们的性能受到较长的检测延迟的影响。本文提出了一种基于奇异谱分析(SSA)理论的预处理方法,使自相干方法能够在使用较少的运行数据的情况下实现更短的延迟和更低的虚警率。通过大量的实验研究,验证了所提出的预处理程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing sustained oscillation detection by data pre-processing using SSA
Detecting sustained oscillations at their early stages can improve power system's situational awareness (SAW), and allows operators take remedial reactions to potential threatens to system's stability. Previously coherence spectrum based detection methods have been proposed to detect sustained oscillation in low signal-to-noise ratios (SNRs) using phasor measurement unit (PMU) data. However, their performance suffers long detection delays. In this paper, a pre-processing method based on Singular Spectrum Analysis (SSA) theory is proposed, which enables the self-coherence method to achieve shorter delay and lower false alarm rate using less operating data. Through extensive experimental study, the effectiveness of the proposed pre-processing procedure has been verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信