用无损反射法和介电光谱法对长电缆的原位缺陷识别分析:比较

S. V. Suraci, D. Fabiani, J. Cohen
{"title":"用无损反射法和介电光谱法对长电缆的原位缺陷识别分析:比较","authors":"S. V. Suraci, D. Fabiani, J. Cohen","doi":"10.1109/eic47619.2020.9158583","DOIUrl":null,"url":null,"abstract":"In this paper the aging through high temperature of 10-meter long coaxial cables and its change in electrical properties have been investigated through non-destructive electrical techniques i.e. dielectric spectroscopy and time domain reflectometry. Both techniques allow changes of electrical properties to be revealed with aging, however, the coupling of these two techniques permits an effective cable aging assessment allowing also the recognition of local defects. Indeed, it has been demonstrated that dielectric spectroscopy is more sensitive when the cable is globally aged, while time domain reflectometry, in addition to a global investigation, can also single out aging occurring in limited portion of cable insulation (local aging).","PeriodicalId":286019,"journal":{"name":"2020 IEEE Electrical Insulation Conference (EIC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In situ defect recognition analysis on long cables through nondestructive reflectometry and dielectric spectroscopy methods: a comparison\",\"authors\":\"S. V. Suraci, D. Fabiani, J. Cohen\",\"doi\":\"10.1109/eic47619.2020.9158583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the aging through high temperature of 10-meter long coaxial cables and its change in electrical properties have been investigated through non-destructive electrical techniques i.e. dielectric spectroscopy and time domain reflectometry. Both techniques allow changes of electrical properties to be revealed with aging, however, the coupling of these two techniques permits an effective cable aging assessment allowing also the recognition of local defects. Indeed, it has been demonstrated that dielectric spectroscopy is more sensitive when the cable is globally aged, while time domain reflectometry, in addition to a global investigation, can also single out aging occurring in limited portion of cable insulation (local aging).\",\"PeriodicalId\":286019,\"journal\":{\"name\":\"2020 IEEE Electrical Insulation Conference (EIC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Insulation Conference (EIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eic47619.2020.9158583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eic47619.2020.9158583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用介电光谱法和时域反射法等非破坏性电学技术研究了10米长同轴电缆的高温老化及其电性能的变化。这两种技术都允许随着老化而显示电性能的变化,然而,这两种技术的耦合允许有效的电缆老化评估,也允许识别局部缺陷。事实上,已经证明,当电缆处于全局老化状态时,介电光谱更加敏感,而时域反射法除了进行全局调查外,还可以挑出电缆绝缘有限部分发生的老化(局部老化)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ defect recognition analysis on long cables through nondestructive reflectometry and dielectric spectroscopy methods: a comparison
In this paper the aging through high temperature of 10-meter long coaxial cables and its change in electrical properties have been investigated through non-destructive electrical techniques i.e. dielectric spectroscopy and time domain reflectometry. Both techniques allow changes of electrical properties to be revealed with aging, however, the coupling of these two techniques permits an effective cable aging assessment allowing also the recognition of local defects. Indeed, it has been demonstrated that dielectric spectroscopy is more sensitive when the cable is globally aged, while time domain reflectometry, in addition to a global investigation, can also single out aging occurring in limited portion of cable insulation (local aging).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信