R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo
{"title":"斯堪的纳维亚语言的多语言情感规范化","authors":"R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo","doi":"10.7146/sss.v12i1.130068","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.","PeriodicalId":233772,"journal":{"name":"Scandinavian Studies in Language","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MULTILINGUAL SENTIMENT NORMALIZATION FOR SCANDINAVIAN LANGUAGES\",\"authors\":\"R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo\",\"doi\":\"10.7146/sss.v12i1.130068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.\",\"PeriodicalId\":233772,\"journal\":{\"name\":\"Scandinavian Studies in Language\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Studies in Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/sss.v12i1.130068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Studies in Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/sss.v12i1.130068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MULTILINGUAL SENTIMENT NORMALIZATION FOR SCANDINAVIAN LANGUAGES
In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.