斯堪的纳维亚语言的多语言情感规范化

R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo
{"title":"斯堪的纳维亚语言的多语言情感规范化","authors":"R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo","doi":"10.7146/sss.v12i1.130068","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.","PeriodicalId":233772,"journal":{"name":"Scandinavian Studies in Language","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MULTILINGUAL SENTIMENT NORMALIZATION FOR SCANDINAVIAN LANGUAGES\",\"authors\":\"R. Baglini, Lasse Hansen, K. Enevoldsen, K. Nielbo\",\"doi\":\"10.7146/sss.v12i1.130068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.\",\"PeriodicalId\":233772,\"journal\":{\"name\":\"Scandinavian Studies in Language\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Studies in Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/sss.v12i1.130068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Studies in Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/sss.v12i1.130068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们使用传统的词典和基于规则的情感工具来解决多语言情感分析的挑战,该工具专门用于捕获特定语言中的情感模式。通过对三种密切相关的斯堪的纳维亚语言(丹麦语、挪威语和瑞典语)的案例研究,并使用三种量身定制的VADER版本,我们使用OPUS语料库测量了语价变化的相对程度。我们发现,在翻译对中,瑞典语的分数系统性地比丹麦语低,而挪威语的分数在其他两种语言中都更高。我们使用神经网络分别优化挪威语和瑞典语与丹麦语作为参考(目标)语言之间的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MULTILINGUAL SENTIMENT NORMALIZATION FOR SCANDINAVIAN LANGUAGES
In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信