naldrette (Pd2Sb):巴西的新发现并与世界范围内的比较

G. Garuti, F. Zaccarini
{"title":"naldrette (Pd2Sb):巴西的新发现并与世界范围内的比较","authors":"G. Garuti, F. Zaccarini","doi":"10.3749/canmin.2000121","DOIUrl":null,"url":null,"abstract":"\n Naldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Naldrettite (Pd2Sb): A new find in Brazil and comparison with worldwide occurrences\",\"authors\":\"G. Garuti, F. Zaccarini\",\"doi\":\"10.3749/canmin.2000121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Naldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.\",\"PeriodicalId\":134244,\"journal\":{\"name\":\"The Canadian Mineralogist\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Mineralogist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.2000121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

naldretite (Pd2Sb)是2005年在加拿大魁北克省Ungava地区Mesamax西北矿床发现的PGM。在其获批前后,世界各地已报道了含有纳辉石型成分的PGM。最常见的是,在岩浆型Ni-Cu-PGE硫化物矿床、Cu-Au型斑岩铜中的热液脉以及阿拉斯加型带状侵入体的PGE矿床中都发现了钠辉铁矿。在交代的Sb-As硫化物矿石、变质的ni -氧化物矿石和足状铬铁矿中偶有发现,尽管这些矿体的出现还没有完全被固体化学分析或共生重建所限制。在这篇论文中,我们报道了在巴西首次发现的钠闪铁矿。这一新发现出现在卢安加复合体中收集的铬铁矿样品中,该复合体是Carajás矿产省的一个新太古代分层侵入物。与蚀变组合(铁铬铁矿、铁氢氧化物、绿泥石)的共生关系表明,这些蚀变组合来自变质热液。Luanga样品的平均组成(Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00显示Pt和As的主要取代。这些元素来源于原生绿柱石的分解,并在低于350°C(伴生绿泥石结晶所记录的最高温度)的温度下,通过渗透流体沉积在绿泥石中。对已记录的产状的概述表明,钠辉褐铁矿可以在各种火成岩(超镁铁质、基性、长英质)中形成,甚至包括最低浓度的Pd和Sb。钠辉褐铁矿的结晶通常发生在岩浆期后,这是由于热液流体的活动,其中含有挥发性物质Sb、As、Bi、Te和Pd,由于其比其他PGE具有更高的流动性。一个主要问题涉及流体的来源,这些流体可以是:(1)宿主岩浆主要结晶之后的“残余”,(2)区域变质或蛇纹岩作用期间的“变质”,以及(3)来自外来岩浆侵入的“交代”。这两种或三种因素的结合是在含钠闪石杂岩中观察到的最有可能的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naldrettite (Pd2Sb): A new find in Brazil and comparison with worldwide occurrences
Naldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信