基于机器学习方法的LAPAN-A3卫星半经验热模拟

Ricky Sutardi, R. E. Poetro, L. Fathurrohim, R. H. Triharjanto, Desti Ika Suryanti
{"title":"基于机器学习方法的LAPAN-A3卫星半经验热模拟","authors":"Ricky Sutardi, R. E. Poetro, L. Fathurrohim, R. H. Triharjanto, Desti Ika Suryanti","doi":"10.1109/ICARES56907.2022.9992303","DOIUrl":null,"url":null,"abstract":"Understanding LAPAN-A3 thermal characteristics is the key to improve the next generation Indonesian micro-satellite thermal design. LAPAN-A1 until LAPAN-A3 use passive thermal control system by means of heat distribution by their structure, and heat radiation coating. Data-driven approaches in satellite thermal analysis are not rare phenomenon and are increasingly used to reduce the complexity in first principle thermal modelling that require high accuracy in the satellite component's thermal properties. This paper presents a simple semi-empirical thermal model to predict satellite temperature using machine learning method trained on real satellite telemetry data. The model can deduce the variables needed to predict satellite temperature changes. The proposed algorithm is implemented with a 7-node model of LAPAN-A3 (6 nodes for each side and 1 node for middle plate) and trained with data from 19 to 20 May 2018 to create satellite node temperature predictions. From initial performance evaluation, the model shows promising results and has potential for real-life usage in future satellite developments.","PeriodicalId":252801,"journal":{"name":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-empirical Thermal Modelling of LAPAN-A3 Satellite Using Machine Learning Method\",\"authors\":\"Ricky Sutardi, R. E. Poetro, L. Fathurrohim, R. H. Triharjanto, Desti Ika Suryanti\",\"doi\":\"10.1109/ICARES56907.2022.9992303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding LAPAN-A3 thermal characteristics is the key to improve the next generation Indonesian micro-satellite thermal design. LAPAN-A1 until LAPAN-A3 use passive thermal control system by means of heat distribution by their structure, and heat radiation coating. Data-driven approaches in satellite thermal analysis are not rare phenomenon and are increasingly used to reduce the complexity in first principle thermal modelling that require high accuracy in the satellite component's thermal properties. This paper presents a simple semi-empirical thermal model to predict satellite temperature using machine learning method trained on real satellite telemetry data. The model can deduce the variables needed to predict satellite temperature changes. The proposed algorithm is implemented with a 7-node model of LAPAN-A3 (6 nodes for each side and 1 node for middle plate) and trained with data from 19 to 20 May 2018 to create satellite node temperature predictions. From initial performance evaluation, the model shows promising results and has potential for real-life usage in future satellite developments.\",\"PeriodicalId\":252801,\"journal\":{\"name\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"volume\":\"1999 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARES56907.2022.9992303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARES56907.2022.9992303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解LAPAN-A3的热特性是改进印尼下一代微型卫星热设计的关键。LAPAN-A1至LAPAN-A3采用被动热控系统,通过其结构分配热量,并采用热辐射涂层。数据驱动方法在卫星热分析中并不罕见,并且越来越多地用于降低对卫星部件热特性要求高精度的第一性原理热建模的复杂性。本文提出了一种简单的半经验热模型,利用机器学习方法对实际卫星遥测数据进行训练,预测卫星温度。该模型可以推断出预测卫星温度变化所需的变量。该算法采用7节点的LAPAN-A3模型(每侧6个节点,中间1个节点),并使用2018年5月19日至20日的数据进行训练,以建立卫星节点温度预测。从最初的性能评估来看,该模型显示出有希望的结果,并有可能在未来的卫星开发中实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-empirical Thermal Modelling of LAPAN-A3 Satellite Using Machine Learning Method
Understanding LAPAN-A3 thermal characteristics is the key to improve the next generation Indonesian micro-satellite thermal design. LAPAN-A1 until LAPAN-A3 use passive thermal control system by means of heat distribution by their structure, and heat radiation coating. Data-driven approaches in satellite thermal analysis are not rare phenomenon and are increasingly used to reduce the complexity in first principle thermal modelling that require high accuracy in the satellite component's thermal properties. This paper presents a simple semi-empirical thermal model to predict satellite temperature using machine learning method trained on real satellite telemetry data. The model can deduce the variables needed to predict satellite temperature changes. The proposed algorithm is implemented with a 7-node model of LAPAN-A3 (6 nodes for each side and 1 node for middle plate) and trained with data from 19 to 20 May 2018 to create satellite node temperature predictions. From initial performance evaluation, the model shows promising results and has potential for real-life usage in future satellite developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信