用于高质量语音合成的生成文本标注方法

D. Spiliotopoulos, C. Vassilakis, Dionisis Margaris, Konstantinos I. Kotis
{"title":"用于高质量语音合成的生成文本标注方法","authors":"D. Spiliotopoulos, C. Vassilakis, Dionisis Margaris, Konstantinos I. Kotis","doi":"10.1109/IISA.2019.8900720","DOIUrl":null,"url":null,"abstract":"Natural Language Generators may generate texts that are linguistically enriched. These may result in significantly improved synthetic speech. At the same time, the generators produce pieces of plain text that may span between a single word to a full sentence. Additionally, traditional natural language generators have limited domain coverage, resulting in restricted language analysis of the generated texts. For those cases the enriched input to the speech synthesizer, required for high quality speech synthesis, can be provided by analysing the plain text. This work reports on the method for automatic domain dependent annotation of plain text, through the utilisation of the linguistic information from rich generated text. The synthetic speech from the resulting prosody models is evaluated by human participants showing annotation results for plain text quite on par with the rich generated text. This leads to improved perceived naturalness of the synthesized speech.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Methodology for Generated Text Annotation for High Quality Speech Synthesis\",\"authors\":\"D. Spiliotopoulos, C. Vassilakis, Dionisis Margaris, Konstantinos I. Kotis\",\"doi\":\"10.1109/IISA.2019.8900720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language Generators may generate texts that are linguistically enriched. These may result in significantly improved synthetic speech. At the same time, the generators produce pieces of plain text that may span between a single word to a full sentence. Additionally, traditional natural language generators have limited domain coverage, resulting in restricted language analysis of the generated texts. For those cases the enriched input to the speech synthesizer, required for high quality speech synthesis, can be provided by analysing the plain text. This work reports on the method for automatic domain dependent annotation of plain text, through the utilisation of the linguistic information from rich generated text. The synthetic speech from the resulting prosody models is evaluated by human participants showing annotation results for plain text quite on par with the rich generated text. This leads to improved perceived naturalness of the synthesized speech.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"1999 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自然语言生成器可以生成语言丰富的文本。这些可能会显著改善合成语音。与此同时,生成器生成的纯文本片段可以跨越一个单词到一个完整的句子。此外,传统的自然语言生成器具有有限的领域覆盖,导致生成文本的语言分析受到限制。对于这些情况,可以通过分析纯文本来提供高质量语音合成所需的语音合成器的丰富输入。本文研究了利用富生成文本中的语言信息对纯文本进行领域相关自动标注的方法。由人类参与者评估生成的韵律模型的合成语音,显示纯文本的注释结果与富生成文本相当。这将提高合成语音的感知自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology for Generated Text Annotation for High Quality Speech Synthesis
Natural Language Generators may generate texts that are linguistically enriched. These may result in significantly improved synthetic speech. At the same time, the generators produce pieces of plain text that may span between a single word to a full sentence. Additionally, traditional natural language generators have limited domain coverage, resulting in restricted language analysis of the generated texts. For those cases the enriched input to the speech synthesizer, required for high quality speech synthesis, can be provided by analysing the plain text. This work reports on the method for automatic domain dependent annotation of plain text, through the utilisation of the linguistic information from rich generated text. The synthetic speech from the resulting prosody models is evaluated by human participants showing annotation results for plain text quite on par with the rich generated text. This leads to improved perceived naturalness of the synthesized speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信