从学术研究论文中探索进化技术趋势

Teng-Kai Fan, Chia-Hui Chang
{"title":"从学术研究论文中探索进化技术趋势","authors":"Teng-Kai Fan, Chia-Hui Chang","doi":"10.1109/DAS.2008.25","DOIUrl":null,"url":null,"abstract":"Automatic Term Recognition (ATR) is concerned with discovering terminology in large volumes of text corpora. Technical terms are vital elements for understanding the techniques used in academic research papers, and in this paper, we use focused technical terms to explore technical trends in the research literature. The major purpose of this work is to understand the relationship between techniques and research topics to better explore technical trends. We define this new text mining issue and apply machine learning algorithms for solving this problem by (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined technology categories; (3) analyzing the evolution of technical trends. The dataset consists of 656 papers collected from well-known conferences on ACM. The experimental results indicate that our proposed methods can effectively explore interesting evolutionary technical trends in various research topics.","PeriodicalId":423207,"journal":{"name":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Exploring Evolutionary Technical Trends from Academic Research Papers\",\"authors\":\"Teng-Kai Fan, Chia-Hui Chang\",\"doi\":\"10.1109/DAS.2008.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Term Recognition (ATR) is concerned with discovering terminology in large volumes of text corpora. Technical terms are vital elements for understanding the techniques used in academic research papers, and in this paper, we use focused technical terms to explore technical trends in the research literature. The major purpose of this work is to understand the relationship between techniques and research topics to better explore technical trends. We define this new text mining issue and apply machine learning algorithms for solving this problem by (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined technology categories; (3) analyzing the evolution of technical trends. The dataset consists of 656 papers collected from well-known conferences on ACM. The experimental results indicate that our proposed methods can effectively explore interesting evolutionary technical trends in various research topics.\",\"PeriodicalId\":423207,\"journal\":{\"name\":\"2008 The Eighth IAPR International Workshop on Document Analysis Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The Eighth IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2008.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2008.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

自动术语识别(ATR)涉及在大量文本语料库中发现术语。技术术语是理解学术研究论文中使用的技术的重要元素,在本文中,我们使用重点技术术语来探索研究文献中的技术趋势。这项工作的主要目的是了解技术和研究课题之间的关系,以更好地探索技术趋势。我们定义了这个新的文本挖掘问题,并应用机器学习算法来解决这个问题,方法是:(1)从研究论文中识别重点技术术语;(二)将这些术语划分为预先确定的技术类别;(3)分析技术趋势演变。该数据集由656篇来自ACM知名会议的论文组成。实验结果表明,我们提出的方法可以有效地探索各种研究课题中有趣的进化技术趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Evolutionary Technical Trends from Academic Research Papers
Automatic Term Recognition (ATR) is concerned with discovering terminology in large volumes of text corpora. Technical terms are vital elements for understanding the techniques used in academic research papers, and in this paper, we use focused technical terms to explore technical trends in the research literature. The major purpose of this work is to understand the relationship between techniques and research topics to better explore technical trends. We define this new text mining issue and apply machine learning algorithms for solving this problem by (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined technology categories; (3) analyzing the evolution of technical trends. The dataset consists of 656 papers collected from well-known conferences on ACM. The experimental results indicate that our proposed methods can effectively explore interesting evolutionary technical trends in various research topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信