机械机械臂的线性鲁棒控制

W.-s. Lu
{"title":"机械机械臂的线性鲁棒控制","authors":"W.-s. Lu","doi":"10.1109/ISIC.1988.65470","DOIUrl":null,"url":null,"abstract":"A linear feedback control scheme for trajectory tracking is presented. It is shown to be robust against model uncertainties. The scheme is based on an eigen-analysis of the inertia matrix of the mechanical manipulator considered and a least-squares-type approximation of the Coriolis, centrifugal, and gravity terms in the manipulator's dynamics. The eigen-analysis and least-squares approximation lead to a simple yet reasonable model which in turn defines a structure of the constant feedback control. To determine the parameters of this controller, an analysis of the tracking-error dynamics is carried out using a Lyapunov approach. It turns out that, by properly choosing a set of feedback gains, the tracking error can be kept to a prescribed range during the task in the presence of the gravity effect and model uncertainties.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Linear robust control of mechanical manipulators\",\"authors\":\"W.-s. Lu\",\"doi\":\"10.1109/ISIC.1988.65470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear feedback control scheme for trajectory tracking is presented. It is shown to be robust against model uncertainties. The scheme is based on an eigen-analysis of the inertia matrix of the mechanical manipulator considered and a least-squares-type approximation of the Coriolis, centrifugal, and gravity terms in the manipulator's dynamics. The eigen-analysis and least-squares approximation lead to a simple yet reasonable model which in turn defines a structure of the constant feedback control. To determine the parameters of this controller, an analysis of the tracking-error dynamics is carried out using a Lyapunov approach. It turns out that, by properly choosing a set of feedback gains, the tracking error can be kept to a prescribed range during the task in the presence of the gravity effect and model uncertainties.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种用于轨迹跟踪的线性反馈控制方案。它对模型的不确定性具有鲁棒性。该方案基于所考虑的机械臂惯性矩阵的特征分析和机械臂动力学中的科里奥利、离心和重力项的最小二乘近似。本征分析和最小二乘逼近得到了一个简单而合理的模型,并由此定义了恒反馈控制的结构。为了确定该控制器的参数,采用李雅普诺夫方法进行了跟踪误差动力学分析。结果表明,在存在重力效应和模型不确定性的情况下,通过适当选择一组反馈增益,可以使跟踪误差保持在规定的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear robust control of mechanical manipulators
A linear feedback control scheme for trajectory tracking is presented. It is shown to be robust against model uncertainties. The scheme is based on an eigen-analysis of the inertia matrix of the mechanical manipulator considered and a least-squares-type approximation of the Coriolis, centrifugal, and gravity terms in the manipulator's dynamics. The eigen-analysis and least-squares approximation lead to a simple yet reasonable model which in turn defines a structure of the constant feedback control. To determine the parameters of this controller, an analysis of the tracking-error dynamics is carried out using a Lyapunov approach. It turns out that, by properly choosing a set of feedback gains, the tracking error can be kept to a prescribed range during the task in the presence of the gravity effect and model uncertainties.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信