Yang Jiao, Yi Niu, Yuting Zhang, Fu Li, Chunbo Zou, Guangming Shi
{"title":"基于卷积神经网络的二维+三维面部表情识别","authors":"Yang Jiao, Yi Niu, Yuting Zhang, Fu Li, Chunbo Zou, Guangming Shi","doi":"10.1109/VCIP47243.2019.8965843","DOIUrl":null,"url":null,"abstract":"Discriminative facial parts are essential for facial expression recognition (FER) tasks because of small inter-class differences and large intra-class variations in expression images. Existing methods localize discriminative regions with the aid of extra facial landmarks, such as action units (AU). However, it consumes a lot of manpower in manually labeling. To address this problem, in this paper, we propose an advanced facial attention based convolutional neural network (FA-CNN) for 2D+3D FER. The main contribution of FA-CNN is the facial attention mechanism, which enables the network to localize the discriminative regions automatically from multi-modality expression images without dense landmark annotations. Experimental results conducted on BU-3DFE demonstrate that FA-CNN achieves state-of-the-art performance comparing with the existing 2D+3D FER techniques, and the discriminative facial parts estimated by the facial attention mechanism are highly interpretable and consistent with human perception.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Facial Attention based Convolutional Neural Network for 2D+3D Facial Expression Recognition\",\"authors\":\"Yang Jiao, Yi Niu, Yuting Zhang, Fu Li, Chunbo Zou, Guangming Shi\",\"doi\":\"10.1109/VCIP47243.2019.8965843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminative facial parts are essential for facial expression recognition (FER) tasks because of small inter-class differences and large intra-class variations in expression images. Existing methods localize discriminative regions with the aid of extra facial landmarks, such as action units (AU). However, it consumes a lot of manpower in manually labeling. To address this problem, in this paper, we propose an advanced facial attention based convolutional neural network (FA-CNN) for 2D+3D FER. The main contribution of FA-CNN is the facial attention mechanism, which enables the network to localize the discriminative regions automatically from multi-modality expression images without dense landmark annotations. Experimental results conducted on BU-3DFE demonstrate that FA-CNN achieves state-of-the-art performance comparing with the existing 2D+3D FER techniques, and the discriminative facial parts estimated by the facial attention mechanism are highly interpretable and consistent with human perception.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8965843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial Attention based Convolutional Neural Network for 2D+3D Facial Expression Recognition
Discriminative facial parts are essential for facial expression recognition (FER) tasks because of small inter-class differences and large intra-class variations in expression images. Existing methods localize discriminative regions with the aid of extra facial landmarks, such as action units (AU). However, it consumes a lot of manpower in manually labeling. To address this problem, in this paper, we propose an advanced facial attention based convolutional neural network (FA-CNN) for 2D+3D FER. The main contribution of FA-CNN is the facial attention mechanism, which enables the network to localize the discriminative regions automatically from multi-modality expression images without dense landmark annotations. Experimental results conducted on BU-3DFE demonstrate that FA-CNN achieves state-of-the-art performance comparing with the existing 2D+3D FER techniques, and the discriminative facial parts estimated by the facial attention mechanism are highly interpretable and consistent with human perception.