面向可重构计算的位-序列矩阵乘法优化

Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas B. Preußer, Magnus Själander
{"title":"面向可重构计算的位-序列矩阵乘法优化","authors":"Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas B. Preußer, Magnus Själander","doi":"10.1145/3337929","DOIUrl":null,"url":null,"abstract":"Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimizing Bit-Serial Matrix Multiplication for Reconfigurable Computing\",\"authors\":\"Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas B. Preußer, Magnus Själander\",\"doi\":\"10.1145/3337929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.\",\"PeriodicalId\":162787,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

矩阵-矩阵乘法是科学和工程中许多应用程序的关键计算内核,具有充足的并行性和数据局部性,非常适合高性能实现。许多依赖于矩阵乘法的应用程序可以使用降低精度的整数或定点表示来提高性能和能源效率,同时仍然提供足够质量的结果。但是,精度要求可能在不同的应用程序阶段或依赖于输入数据而有所不同,这使得恒定精度的解决方案无效。BISMO是一种用于可重构计算的矢量化位串行矩阵乘法覆盖层,以前利用fpga出色的二进制运算性能来提供具有所需精度和并行性的矩阵乘法性能。我们展示了如何在赛灵思fpga上使用更好地利用六输入lut的算法架构扩展BISMO。改进的BISMO在采用Xilinx UltraScale+ MPSoC的Ultra96板上实现了15.4二进制TOPS的峰值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Bit-Serial Matrix Multiplication for Reconfigurable Computing
Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信