SDCWorks:智能制造系统软件定义控制的正式框架

Matthew Potok, Chien-Ying Chen, S. Mitra, Sibin Mohan
{"title":"SDCWorks:智能制造系统软件定义控制的正式框架","authors":"Matthew Potok, Chien-Ying Chen, S. Mitra, Sibin Mohan","doi":"10.1109/ICCPS.2018.00017","DOIUrl":null,"url":null,"abstract":"Discrete manufacturing systems are complex cyber-physical systems (CPS) and their availability, performance, and quality have a big impact on the economy. Smart manufacturing promises to improve these aspects. One key approach that is being pursued in this context is the creation of centralized software-defined control (SDC) architectures and strategies that use diverse sensors and data sources to make manufacturing more adaptive, resilient, and programmable. In this paper, we present SDCWorks—a modeling and simulation framework for SDC. It consists of the semantic structures for creating models, a baseline controller, and an open source implementation of a discrete event simulator for SDCWorks models. We provide the semantics of such a manufacturing system in terms of a discrete transition system which sets up the platform for future research in a new class of problems in formal verification, synthesis, and monitoring. We illustrate the expressive power of SDCWorks by modeling the realistic SMART manufacturing testbed of University of Michigan. We show how our open source SDCWorks simulator can be used to evaluate relevant metrics (throughput, latency, and load) for example manufacturing systems.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SDCWorks: A Formal Framework for Software Defined Control of Smart Manufacturing Systems\",\"authors\":\"Matthew Potok, Chien-Ying Chen, S. Mitra, Sibin Mohan\",\"doi\":\"10.1109/ICCPS.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete manufacturing systems are complex cyber-physical systems (CPS) and their availability, performance, and quality have a big impact on the economy. Smart manufacturing promises to improve these aspects. One key approach that is being pursued in this context is the creation of centralized software-defined control (SDC) architectures and strategies that use diverse sensors and data sources to make manufacturing more adaptive, resilient, and programmable. In this paper, we present SDCWorks—a modeling and simulation framework for SDC. It consists of the semantic structures for creating models, a baseline controller, and an open source implementation of a discrete event simulator for SDCWorks models. We provide the semantics of such a manufacturing system in terms of a discrete transition system which sets up the platform for future research in a new class of problems in formal verification, synthesis, and monitoring. We illustrate the expressive power of SDCWorks by modeling the realistic SMART manufacturing testbed of University of Michigan. We show how our open source SDCWorks simulator can be used to evaluate relevant metrics (throughput, latency, and load) for example manufacturing systems.\",\"PeriodicalId\":199062,\"journal\":{\"name\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

离散制造系统是复杂的网络物理系统(CPS),其可用性、性能和质量对经济产生重大影响。智能制造有望改善这些方面。在这种情况下,一个关键的方法是创建集中式软件定义控制(SDC)架构和策略,使用不同的传感器和数据源,使制造更具适应性、弹性和可编程性。在本文中,我们提出了sdcworks -一个SDC建模和仿真框架。它由用于创建模型的语义结构、基线控制器和用于SDCWorks模型的离散事件模拟器的开源实现组成。我们从离散过渡系统的角度提供了这样一个制造系统的语义,这为未来在形式验证、综合和监测方面的一类新问题的研究建立了平台。我们通过模拟密歇根大学的现实智能制造测试平台来说明SDCWorks的表现力。我们将展示如何使用我们的开源SDCWorks模拟器来评估例如制造系统的相关指标(吞吐量、延迟和负载)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDCWorks: A Formal Framework for Software Defined Control of Smart Manufacturing Systems
Discrete manufacturing systems are complex cyber-physical systems (CPS) and their availability, performance, and quality have a big impact on the economy. Smart manufacturing promises to improve these aspects. One key approach that is being pursued in this context is the creation of centralized software-defined control (SDC) architectures and strategies that use diverse sensors and data sources to make manufacturing more adaptive, resilient, and programmable. In this paper, we present SDCWorks—a modeling and simulation framework for SDC. It consists of the semantic structures for creating models, a baseline controller, and an open source implementation of a discrete event simulator for SDCWorks models. We provide the semantics of such a manufacturing system in terms of a discrete transition system which sets up the platform for future research in a new class of problems in formal verification, synthesis, and monitoring. We illustrate the expressive power of SDCWorks by modeling the realistic SMART manufacturing testbed of University of Michigan. We show how our open source SDCWorks simulator can be used to evaluate relevant metrics (throughput, latency, and load) for example manufacturing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信