区间值噪声数据的样条回归技术

Balaji Kommineni, Shubhankar Basu, R. Vemuri
{"title":"区间值噪声数据的样条回归技术","authors":"Balaji Kommineni, Shubhankar Basu, R. Vemuri","doi":"10.1109/ICMLA.2007.100","DOIUrl":null,"url":null,"abstract":"In this paper we present a spline based center and range method (SCRM) to perform regression on interval valued noisy data. The method provides a fast and accurate mechanism to model and predict upper and lower limits of unknown functions in a bounded design space. This technique is superior to previously existing techniques like center and range linear least square regression (CRM). The accurate models may find wide usage in high precision applications. The effectiveness of the proposed technique is demonstrated through experiments on datasets with various applications.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A spline based regression technique on interval valued noisy data\",\"authors\":\"Balaji Kommineni, Shubhankar Basu, R. Vemuri\",\"doi\":\"10.1109/ICMLA.2007.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a spline based center and range method (SCRM) to perform regression on interval valued noisy data. The method provides a fast and accurate mechanism to model and predict upper and lower limits of unknown functions in a bounded design space. This technique is superior to previously existing techniques like center and range linear least square regression (CRM). The accurate models may find wide usage in high precision applications. The effectiveness of the proposed technique is demonstrated through experiments on datasets with various applications.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"1999 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于样条的中心极差法(SCRM)对区间值噪声数据进行回归。该方法提供了一种快速准确的机制来建模和预测有限设计空间中未知函数的上下限。该技术优于先前存在的中心和范围线性最小二乘回归(CRM)等技术。精确的模型可以在高精度应用中得到广泛的应用。通过各种应用的数据集实验证明了所提出技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spline based regression technique on interval valued noisy data
In this paper we present a spline based center and range method (SCRM) to perform regression on interval valued noisy data. The method provides a fast and accurate mechanism to model and predict upper and lower limits of unknown functions in a bounded design space. This technique is superior to previously existing techniques like center and range linear least square regression (CRM). The accurate models may find wide usage in high precision applications. The effectiveness of the proposed technique is demonstrated through experiments on datasets with various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信