Xiaogang Du, Yinghao Wu, Tao Lei, Dongxin Gu, Yinyin Nie, A. Nandi
{"title":"ATENet:用于息肉分割的自适应小目标增强网络","authors":"Xiaogang Du, Yinghao Wu, Tao Lei, Dongxin Gu, Yinyin Nie, A. Nandi","doi":"10.1109/ICME55011.2023.00389","DOIUrl":null,"url":null,"abstract":"Polyp segmentation is of great importance for the diagnosis and treatment of colorectal cancer. However, it is difficult to segment polyps accurately due to a large number of tiny polyps and the low contrast between polyps and the surrounding mucosa. To address this issue, we design an Adaptive Tiny-object Enhanced Network (ATENet) for tiny polyp segmentation. The proposed ATENet has two advantages: First, we design an adaptive tiny-object encoder containing three parallel branches, which can effectively extract the shape and position features of tiny polyps and thus improve the segmentation accuracy of tiny polyps. Second, we design a simple enhanced feature decoder, which can not only suppress the background noise of feature maps, but also supplement the detail information to improve further the polyp segmentation accuracy. Extensive experiments on three benchmark datasets demonstrate that the proposed ATENet can achieve the state-of-the-art performance while maintaining low computational complexity.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATENet: Adaptive Tiny-Object Enhanced Network for Polyp Segmentation\",\"authors\":\"Xiaogang Du, Yinghao Wu, Tao Lei, Dongxin Gu, Yinyin Nie, A. Nandi\",\"doi\":\"10.1109/ICME55011.2023.00389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyp segmentation is of great importance for the diagnosis and treatment of colorectal cancer. However, it is difficult to segment polyps accurately due to a large number of tiny polyps and the low contrast between polyps and the surrounding mucosa. To address this issue, we design an Adaptive Tiny-object Enhanced Network (ATENet) for tiny polyp segmentation. The proposed ATENet has two advantages: First, we design an adaptive tiny-object encoder containing three parallel branches, which can effectively extract the shape and position features of tiny polyps and thus improve the segmentation accuracy of tiny polyps. Second, we design a simple enhanced feature decoder, which can not only suppress the background noise of feature maps, but also supplement the detail information to improve further the polyp segmentation accuracy. Extensive experiments on three benchmark datasets demonstrate that the proposed ATENet can achieve the state-of-the-art performance while maintaining low computational complexity.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ATENet: Adaptive Tiny-Object Enhanced Network for Polyp Segmentation
Polyp segmentation is of great importance for the diagnosis and treatment of colorectal cancer. However, it is difficult to segment polyps accurately due to a large number of tiny polyps and the low contrast between polyps and the surrounding mucosa. To address this issue, we design an Adaptive Tiny-object Enhanced Network (ATENet) for tiny polyp segmentation. The proposed ATENet has two advantages: First, we design an adaptive tiny-object encoder containing three parallel branches, which can effectively extract the shape and position features of tiny polyps and thus improve the segmentation accuracy of tiny polyps. Second, we design a simple enhanced feature decoder, which can not only suppress the background noise of feature maps, but also supplement the detail information to improve further the polyp segmentation accuracy. Extensive experiments on three benchmark datasets demonstrate that the proposed ATENet can achieve the state-of-the-art performance while maintaining low computational complexity.