具有不确定性的查询竞争排序

M. Halldórsson, M. S. D. Lima
{"title":"具有不确定性的查询竞争排序","authors":"M. Halldórsson, M. S. D. Lima","doi":"10.4230/LIPIcs.MFCS.2019.7","DOIUrl":null,"url":null,"abstract":"We study the problem of sorting under incomplete information, when queries are used to resolve uncertainties. Each of n data items has an unknown value, which is known to lie in a given interval. We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting. The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries. We show that an offline optimum query set can be found in polynomial time, and that both oblivious and adaptive problems have simple query-competitive algorithms. The query-competitiveness for the oblivious problem is n for uniform query costs, and unbounded for arbitrary costs; for the adaptive problem, the ratio is 2. We then present a unified adaptive strategy for uniform query costs that yields: (i) a 3/2-query-competitive randomized algorithm; (ii) a 5/3-query-competitive deterministic algorithm if the dependency graph has no 2-components after some preprocessing, which has query-competitive ratio 3/2 + O(1/k) if the components obtained have size at least k; (iii) an exact algorithm if the intervals constitute a laminar family. The first two results have matching lower bounds, and we have a lower bound of 7/5 for large components. We also show that the advice complexity of the adaptive problem is floor[n/2] if no error threshold is allowed, and ceil[n/3 * lg 3] for the general case.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Query-Competitive Sorting with Uncertainty\",\"authors\":\"M. Halldórsson, M. S. D. Lima\",\"doi\":\"10.4230/LIPIcs.MFCS.2019.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of sorting under incomplete information, when queries are used to resolve uncertainties. Each of n data items has an unknown value, which is known to lie in a given interval. We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting. The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries. We show that an offline optimum query set can be found in polynomial time, and that both oblivious and adaptive problems have simple query-competitive algorithms. The query-competitiveness for the oblivious problem is n for uniform query costs, and unbounded for arbitrary costs; for the adaptive problem, the ratio is 2. We then present a unified adaptive strategy for uniform query costs that yields: (i) a 3/2-query-competitive randomized algorithm; (ii) a 5/3-query-competitive deterministic algorithm if the dependency graph has no 2-components after some preprocessing, which has query-competitive ratio 3/2 + O(1/k) if the components obtained have size at least k; (iii) an exact algorithm if the intervals constitute a laminar family. The first two results have matching lower bounds, and we have a lower bound of 7/5 for large components. We also show that the advice complexity of the adaptive problem is floor[n/2] if no error threshold is allowed, and ceil[n/3 * lg 3] for the general case.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2019.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2019.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了不完全信息下的排序问题,当查询被用来解决不确定性时。n个数据项中的每一个都有一个未知值,已知它位于给定的区间内。我们可以支付查询代价来学习实际值,并且我们可以在排序中允许一个错误阈值。目标是通过执行一组成本最小的查询来找到一个几乎排序的排列。我们证明了离线最优查询集可以在多项式时间内找到,并且遗忘和自适应问题都具有简单的查询竞争算法。对于一致的查询代价,遗忘问题的查询竞争是n,对于任意的查询代价,查询竞争是无界的;对于自适应问题,比值为2。然后,我们提出了统一查询成本的统一自适应策略,该策略产生:(i) 3/2-查询竞争随机算法;(ii)当依赖图经过预处理后不存在2个分量时,采用5/3-查询竞争确定性算法,当获得的分量大小至少为k时,其查询竞争比为3/2 + O(1/k);(iii)如果区间构成层流族,则给出精确算法。前两个结果有匹配的下界,对于大分量我们有7/5的下界。我们还表明,如果不允许错误阈值,自适应问题的通知复杂性为下限[n/2],对于一般情况,通知复杂性为上限[n/3 * lg3]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-Competitive Sorting with Uncertainty
We study the problem of sorting under incomplete information, when queries are used to resolve uncertainties. Each of n data items has an unknown value, which is known to lie in a given interval. We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting. The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries. We show that an offline optimum query set can be found in polynomial time, and that both oblivious and adaptive problems have simple query-competitive algorithms. The query-competitiveness for the oblivious problem is n for uniform query costs, and unbounded for arbitrary costs; for the adaptive problem, the ratio is 2. We then present a unified adaptive strategy for uniform query costs that yields: (i) a 3/2-query-competitive randomized algorithm; (ii) a 5/3-query-competitive deterministic algorithm if the dependency graph has no 2-components after some preprocessing, which has query-competitive ratio 3/2 + O(1/k) if the components obtained have size at least k; (iii) an exact algorithm if the intervals constitute a laminar family. The first two results have matching lower bounds, and we have a lower bound of 7/5 for large components. We also show that the advice complexity of the adaptive problem is floor[n/2] if no error threshold is allowed, and ceil[n/3 * lg 3] for the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信