随机时滞采样数据系统的线性二次控制

M. Wakaiki, Masaki Ogura, J. Hespanha
{"title":"随机时滞采样数据系统的线性二次控制","authors":"M. Wakaiki, Masaki Ogura, J. Hespanha","doi":"10.23919/ACC.2017.7963242","DOIUrl":null,"url":null,"abstract":"We study optimal control for sampled-data systems with stochastic delays. Assuming that the delays can be modeled by a Markov chain and can be measured by controllers, we design a control law that minimizes an infinite-horizon continuous-time quadratic cost function. The resulting optimal control law can be efficiently computed offline by the iteration of a certain Riccati difference equation. We also obtain sufficient conditions in terms of linear matrix inequalities for stochastic stabilizability and detectability, which are used for the optimal controller design.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear quadratic control for sampled-data systems with stochastic delays\",\"authors\":\"M. Wakaiki, Masaki Ogura, J. Hespanha\",\"doi\":\"10.23919/ACC.2017.7963242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study optimal control for sampled-data systems with stochastic delays. Assuming that the delays can be modeled by a Markov chain and can be measured by controllers, we design a control law that minimizes an infinite-horizon continuous-time quadratic cost function. The resulting optimal control law can be efficiently computed offline by the iteration of a certain Riccati difference equation. We also obtain sufficient conditions in terms of linear matrix inequalities for stochastic stabilizability and detectability, which are used for the optimal controller design.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了具有随机时滞的采样数据系统的最优控制问题。假设时滞可以用马尔可夫链建模,并且可以被控制器测量,我们设计了一个最小化无限视界连续时间二次代价函数的控制律。所得到的最优控制律可以通过对某Riccati差分方程的迭代进行离线高效计算。我们还利用线性矩阵不等式得到了随机稳定和可检测的充分条件,用于最优控制器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear quadratic control for sampled-data systems with stochastic delays
We study optimal control for sampled-data systems with stochastic delays. Assuming that the delays can be modeled by a Markov chain and can be measured by controllers, we design a control law that minimizes an infinite-horizon continuous-time quadratic cost function. The resulting optimal control law can be efficiently computed offline by the iteration of a certain Riccati difference equation. We also obtain sufficient conditions in terms of linear matrix inequalities for stochastic stabilizability and detectability, which are used for the optimal controller design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信