融合手部几何和掌纹的生物特征验证

Wen-Shiung Chen, Yao-Shan Chiang, Yen-Hsun Chiu
{"title":"融合手部几何和掌纹的生物特征验证","authors":"Wen-Shiung Chen, Yao-Shan Chiang, Yen-Hsun Chiu","doi":"10.1109/IIH-MSP.2007.351","DOIUrl":null,"url":null,"abstract":"This paper presents a biometric recognition system with fusion of hand geometry and palmprint of a human hand based on wavelet transform and statistical moments. The feature extraction module adopts the gradient direction (i.e., angle) and quadratic spline function of wavelet transform as the discriminating texture features in palmprint, and the statistical moments calculated from hand geometry. The system generates the palmprint feature codes using a binary gray encoding. The recognition rates up to 94.17%, 95.50%, 96.67%, and 98.33%, respectively, using different feature extraction methods may be achieved.","PeriodicalId":385132,"journal":{"name":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Biometric Verification by Fusing Hand Geometry and Palmprint\",\"authors\":\"Wen-Shiung Chen, Yao-Shan Chiang, Yen-Hsun Chiu\",\"doi\":\"10.1109/IIH-MSP.2007.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a biometric recognition system with fusion of hand geometry and palmprint of a human hand based on wavelet transform and statistical moments. The feature extraction module adopts the gradient direction (i.e., angle) and quadratic spline function of wavelet transform as the discriminating texture features in palmprint, and the statistical moments calculated from hand geometry. The system generates the palmprint feature codes using a binary gray encoding. The recognition rates up to 94.17%, 95.50%, 96.67%, and 98.33%, respectively, using different feature extraction methods may be achieved.\",\"PeriodicalId\":385132,\"journal\":{\"name\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2007.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2007.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种基于小波变换和统计矩的手掌几何特征与掌纹融合的生物特征识别系统。特征提取模块采用小波变换的梯度方向(即角度)和二次样条函数作为掌纹的判别纹理特征,并根据手的几何形状计算统计矩。系统采用二值灰度编码生成掌纹特征码。采用不同的特征提取方法,其识别率分别可达94.17%、95.50%、96.67%和98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric Verification by Fusing Hand Geometry and Palmprint
This paper presents a biometric recognition system with fusion of hand geometry and palmprint of a human hand based on wavelet transform and statistical moments. The feature extraction module adopts the gradient direction (i.e., angle) and quadratic spline function of wavelet transform as the discriminating texture features in palmprint, and the statistical moments calculated from hand geometry. The system generates the palmprint feature codes using a binary gray encoding. The recognition rates up to 94.17%, 95.50%, 96.67%, and 98.33%, respectively, using different feature extraction methods may be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信