Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer
{"title":"后编译软件优化,减少能源","authors":"Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer","doi":"10.1145/2541940.2541980","DOIUrl":null,"url":null,"abstract":"Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Post-compiler software optimization for reducing energy\",\"authors\":\"Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer\",\"doi\":\"10.1145/2541940.2541980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.\",\"PeriodicalId\":128805,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2541940.2541980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Post-compiler software optimization for reducing energy
Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.