后编译软件优化,减少能源

Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer
{"title":"后编译软件优化,减少能源","authors":"Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer","doi":"10.1145/2541940.2541980","DOIUrl":null,"url":null,"abstract":"Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Post-compiler software optimization for reducing energy\",\"authors\":\"Eric M. Schulte, Jonathan Dorn, Stephen Harding, S. Forrest, Westley Weimer\",\"doi\":\"10.1145/2541940.2541980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.\",\"PeriodicalId\":128805,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2541940.2541980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

现代编译器通常针对可执行文件的大小和速度进行优化,很少探索非功能属性,如电源效率。这些属性通常是特定于硬件的,需要花费大量时间进行优化,并且可能不适合标准的数据流优化。我们提出了一种通用的后编译方法,称为遗传优化算法(GOA),它针对编译成x86汇编的程序中软件执行的可测量的非功能方面。GOA结合了轮廓引导优化、超优化、进化计算和突变鲁棒性的见解。GOA搜索保留所需功能行为的程序变体,同时改进非功能行为,使用特征工作负载和预测建模来指导搜索。使用物理性能测量和更大的测试套件来验证所得到的优化。我们在PARSEC基准程序上的实验结果显示,在保持程序在目标工作负载上的功能的同时,大型AMD系统和小型英特尔系统的平均能耗都降低了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-compiler software optimization for reducing energy
Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信