基于Copula的雷达系统推理依赖建模

Sora Choi, Hao He, P. Varshney
{"title":"基于Copula的雷达系统推理依赖建模","authors":"Sora Choi, Hao He, P. Varshney","doi":"10.1109/RADARCONF.2015.7411879","DOIUrl":null,"url":null,"abstract":"Statistical dependence is one of the significant design issues in various radar systems for inference tasks including detecting an activity of interest or estimating states or parameters for situational awareness. Modeling dependence has been discussed in many articles on radar and the research has shown that taking dependence into account improves performance of inference tasks. In this paper, we introduce copulas as flexible tools for modeling of nonlinear/linear dependence. Copulas allow one to model the dependence structures among random variables with arbitrary marginal distributions. We explore the potential use of copula theory in radar systems while discussing the dependence modeling problem. Then we present an application for binary hypothesis testing to show the benefit of using copula theory.","PeriodicalId":267194,"journal":{"name":"2015 IEEE Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copula based dependence modeling for inference in RADAR systems\",\"authors\":\"Sora Choi, Hao He, P. Varshney\",\"doi\":\"10.1109/RADARCONF.2015.7411879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical dependence is one of the significant design issues in various radar systems for inference tasks including detecting an activity of interest or estimating states or parameters for situational awareness. Modeling dependence has been discussed in many articles on radar and the research has shown that taking dependence into account improves performance of inference tasks. In this paper, we introduce copulas as flexible tools for modeling of nonlinear/linear dependence. Copulas allow one to model the dependence structures among random variables with arbitrary marginal distributions. We explore the potential use of copula theory in radar systems while discussing the dependence modeling problem. Then we present an application for binary hypothesis testing to show the benefit of using copula theory.\",\"PeriodicalId\":267194,\"journal\":{\"name\":\"2015 IEEE Radar Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADARCONF.2015.7411879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADARCONF.2015.7411879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计依赖性是各种雷达系统用于推理任务的重要设计问题之一,包括检测感兴趣的活动或估计态势感知的状态或参数。建模依赖已经在雷达领域的许多文章中进行了讨论,研究表明,考虑依赖可以提高推理任务的性能。在本文中,我们引入了copula作为非线性/线性依赖建模的灵活工具。用copula可以对具有任意边缘分布的随机变量之间的依赖结构进行建模。在讨论相关性建模问题的同时,探讨了copula理论在雷达系统中的潜在应用。然后,我们给出了一个二元假设检验的应用,以说明使用联结理论的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copula based dependence modeling for inference in RADAR systems
Statistical dependence is one of the significant design issues in various radar systems for inference tasks including detecting an activity of interest or estimating states or parameters for situational awareness. Modeling dependence has been discussed in many articles on radar and the research has shown that taking dependence into account improves performance of inference tasks. In this paper, we introduce copulas as flexible tools for modeling of nonlinear/linear dependence. Copulas allow one to model the dependence structures among random variables with arbitrary marginal distributions. We explore the potential use of copula theory in radar systems while discussing the dependence modeling problem. Then we present an application for binary hypothesis testing to show the benefit of using copula theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信