用深度神经网络建模电磁问题

F. Xu, Shilei Fu
{"title":"用深度神经网络建模电磁问题","authors":"F. Xu, Shilei Fu","doi":"10.1109/COMPEM.2018.8496532","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling EM Problem with Deep Neural Networks\",\"authors\":\"F. Xu, Shilei Fu\",\"doi\":\"10.1109/COMPEM.2018.8496532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文探讨了利用深度神经网络(DNN)对电磁正演问题进行建模的潜力。作为初步尝试,我们使用深度卷积神经网络(CNN)拟合二维有限元边界积分(FE-BI)模型计算的非均匀圆形区域的散射场。该方法提供了一种快速映射特定EM问题输入到输出的新工具,为DNN求解逆问题的进一步研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling EM Problem with Deep Neural Networks
This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信